Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
1.
Comput Biol Med ; 178: 108702, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38878397

RESUMO

Artificial intelligence (AI) has emerged as a powerful tool to revolutionize the healthcare sector, including drug delivery and development. This review explores the current and future applications of AI in the pharmaceutical industry, focusing on drug delivery and development. It covers various aspects such as smart drug delivery networks, sensors, drug repurposing, statistical modeling, and simulation of biotechnological and biological systems. The integration of AI with nanotechnologies and nanomedicines is also examined. AI offers significant advancements in drug discovery by efficiently identifying compounds, validating drug targets, streamlining drug structures, and prioritizing response templates. Techniques like data mining, multitask learning, and high-throughput screening contribute to better drug discovery and development innovations. The review discusses AI applications in drug formulation and delivery, clinical trials, drug safety, and pharmacovigilance. It addresses regulatory considerations and challenges associated with AI in pharmaceuticals, including privacy, data security, and interpretability of AI models. The review concludes with future perspectives, highlighting emerging trends, addressing limitations and biases in AI models, and emphasizing the importance of collaboration and knowledge sharing. It provides a comprehensive overview of AI's potential to transform the pharmaceutical industry and improve patient care while identifying further research and development areas.

2.
Environ Res ; 259: 119448, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38942255

RESUMO

Dye wastewater consists of high solids concentrations, heavy metals, minor contaminants, dissolved chemical oxygen demand, and microorganisms. Nanoflowers are nanoparticles that resemble flowers when viewed at a microscopic level. Inorganic metal oxide nanoflowers have been discovered to be a potential source for overcoming this situation. Their flower-like features give them a higher surface area to volume ratio and porosity structure, which can absorb a significant amount of dye. The metal oxide nanoflower synthesized from different synthesis methods is used to compare which one is cost-effective and capable of generating a large scale of nanoflower. This review has demonstrated outstanding dye removal efficiency by applying inorganic nanoflowers to dye removal. Since both adsorption and photocatalytic reactions enhance the dye degradation process, complete dye degradation could be achieved. Meanwhile, the inorganic metal oxide nanoflowers' exemplary reusability characteristics with negligible performance drop further prove that this approach is highly sustainable and may help to save costs. This review has proven the momentum of obtaining high dye removal efficiency in wastewater treatment to conclude that the metal oxide nanoflower study is worth researching.

3.
AAPS PharmSciTech ; 25(6): 145, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918292

RESUMO

The objective of the current research was to develop abietic acid (AA)-loaded hybrid polymeric nanoparticles (HNPs) for anti-inflammatory and antioxidant activity after oral administration. AAHNPs were developed by microinjection technique and optimized by 3-factor 3-level Box-Behnken design. The AAHNPs were evaluated for morphology, FTIR, X-ray diffraction, in-vitro release, ex-vivo permeation, in-vitro antioxidant, and in-vivo anti-inflammatory activity. The optimized AAHNPs (AAHNPsopt) displayed 384.5 ± 6.36nm of PS, 0.376 of PDI, 23.0 mV of ZP, and 80.01 ± 1.89% of EE. FTIR and X-ray diffraction study results revealed that AA was encapsulated into a HNPs matrix. The AAHNPsopt showed significant (P < 0.05) high and sustained release of AA (86.72 ± 4.92%) than pure AA (29.87 ± 3.11%) in 24h. AAHNPsopt showed an initial fast release of AA (20.12 ± 3.07% in 2h), which succeeded in reaching the therapeutic concentration. The AAHNPsopt showed 2.49-fold higher ex-vivo gut permeation flux than pure AA due to the presence of lipid and surfactant. The AAHNPsopt exhibited significantly (P < 0.05, P < 0.01, P < 0.001) higher antioxidant activity as compared to pure AA at each concentration. AAHNPsopt formulation displayed a significantly (P < 0.05) higher anti-inflammatory effect (21.51 ± 2.23% swelling) as compared to pure AA (46.51 ± 1.74% swelling). From the in-vitro and in-vivo finding, it was concluded that HNPs might be a suitable carrier for the improvement of the therapeutic efficacy of the drug.


Assuntos
Abietanos , Anti-Inflamatórios , Antioxidantes , Portadores de Fármacos , Lipídeos , Nanopartículas , Polímeros , Nanopartículas/química , Animais , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/administração & dosagem , Antioxidantes/farmacocinética , Ratos , Polímeros/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacocinética , Lipídeos/química , Portadores de Fármacos/química , Abietanos/farmacologia , Abietanos/administração & dosagem , Abietanos/química , Difração de Raios X/métodos , Liberação Controlada de Fármacos , Administração Oral , Masculino , Tamanho da Partícula , Ratos Wistar , Química Farmacêutica/métodos
4.
Saudi J Biol Sci ; 31(8): 104035, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38934013

RESUMO

Interleukin-8 (IL-8) is a chemokine, a type of signaling molecule that has a role in immunological responses and inflammation. In recent years, IL-8 is additionally related to cancer growth and recurrence. Breast cancer growth, progression, and metastatic development are all linked to IL-8. Breast cancer cells are known to develop faster when IL-8 stimulates their proliferation and survival. It can also cause angiogenesis, or the creation of new blood vessels, which is necessary for tumor nutrition and growth. IL-8 and curcumin have been subjects of interest in drug design, particularly in the context of inflammation-related disorders and cancer. This study aims to give an overview of the role of IL-8. Inhibitor-based treatment approaches were being used to target IL-8 with curcumin. Molecular docking method was employed to find a potential interaction to supress competitive inhibition of IL-8 with curcumin. PASS analysis and ADMET characteristics were also being carried out. In the end, IL-8 complexed with curcumin is chosen for MD simulations. Overall, our results showed that during the simulation, the complex stayed comparatively stable. It is also possible to investigate curcumin further as a possible treatment option. The combined results imply that IL-8 and their genetic alterations can be studied in precision cancer therapeutic treatments, utilizing target-driven therapy and early diagnosis.

5.
Chemosphere ; 358: 142235, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705416

RESUMO

Ultraviolet (UV) radiation is a major contributor to skin aging, cancer, and other detrimental health effects. Sunscreens containing FDA-approved UV filters, like avobenzone, offer protection but suffer from photodegradation and potential phototoxicity. Encapsulation, antioxidants, and photostabilizers are strategies employed to combat these drawbacks. Octocrylene, an organic UV filter, utilizes nanotechnology to enhance sun protection factor (SPF). This review examines recent literature on octocrylene-enriched sunscreens, exploring the interplay between environmental impact, nanotechnological advancements, and clinical trial insights. A critical focus is placed on the environmental consequences of sunscreen use, particularly the potential hazards UV filters pose to marine ecosystems. Research in the Mediterranean Sea suggests bacterial sensitivity to these filters, raising concerns about their integration into the food chain. This review aims to guide researchers in developing effective strategies for photostabilization of UV filters. By combining encapsulation, photostabilizers, and antioxidants, researchers can potentially reduce phototoxic effects and contribute to developing more environmentally friendly sunscreens.


Assuntos
Protetores Solares , Raios Ultravioleta , Protetores Solares/química , Protetores Solares/toxicidade , Humanos , Acrilatos/química , Nanotecnologia , Antioxidantes/química , Fator de Proteção Solar
6.
J Colloid Interface Sci ; 667: 585-596, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38657542

RESUMO

Binary metal phosphate electrodes have been widely studied for energy storage applications due to the synergistic effects of two different transition elements that able to provide better conductivity and stability. Herein, the battery-type binder-free nickel-manganese phosphate (NiMn-phosphate) electrodes were fabricated with different Ni:Mn precursor ratios via microwave-assisted hydrothermal technique for 5 min at 90 °C. Overall, NiMn3P electrode (Ni:Mn = 1:3) showed an outstanding electrochemical performance, displaying the highest specific (areal) capacity at 3 A/g of 1262.4 C/g (0.44 C/cm2), and the smallest charge transfer resistance of 108.8 Ω. The enhanced performance of NiMn3P electrode can be ascribed to the fully grown amorphous nature and small-sized flake and flower structures of NiMn3P electrode material on the nickel foam (NF) surface. This configuration offered a higher number of active sites and a larger exposed area, facilitating efficient electrochemical reactions with the electrolyte. Consequently, the NiMn3P//AC electrode combination was chosen to further investigate its performance in supercapattery. The NiMn3P//AC supercapattery exhibited remarkable energy density of 105.4 Wh/kg and excellent cyclic stability with 84.7% retention after 3000 cycles. These findings underscored the superior electrochemical performance of the battery-type binder-free NiMn3P electrode, and highlight its potential for enhancing the overall performance of supercapattery.

7.
Chemosphere ; 358: 141936, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38614393

RESUMO

This study presents the adsorption of methylene blue (MB) dye using latex char derived from pyrolysis of latex gloves. The adsorption process was investigated systematically using Response Surface Methodology (RSM) with a Central Composite Design (CCD). The effects of four key variables, namely pH, time, temperature, and adsorbent dosage, were studied using a factorial design enriched with center points and axial points. Experimental data were analyzed using a second-order polynomial regression model to construct a response surface model, which elucidated the relationship between the variables and MB removal efficiency. The study found that the char obtained at 800 °C exhibited the highest adsorption capacity due to its increased carbonization, expanded surface area, and diverse pore structure. Analysis of Variance (ANOVA) confirmed the significance of the quadratic model, with remarkable agreement between predicted and experimental outcomes. Diagnostic plots validated the model's reliability, while 3D contour graphs illustrated the combined effects of variables on MB removal efficiency. Optimization using DoE software identified optimal conditions resulting in a 99% removal efficiency, which closely matched experimental results. Additionally, adsorption isotherms revealed that the Freundlich model best described the adsorption behavior, indicating heterogeneous surface adsorption with multilayer adsorption. This comprehensive study provides valuable insights into the adsorption process of MB dye using latex char, with implications for wastewater treatment and environmental remediation.


Assuntos
Látex , Azul de Metileno , Poluentes Químicos da Água , Azul de Metileno/química , Adsorção , Látex/química , Poluentes Químicos da Água/química , Águas Residuárias/química , Corantes/química , Temperatura , Concentração de Íons de Hidrogênio , Eliminação de Resíduos Líquidos/métodos , Carvão Vegetal/química , Purificação da Água/métodos
8.
Front Chem ; 12: 1352009, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435669

RESUMO

Glioblastoma multiforme (GBM) is regarded as the most aggressive form of brain tumor delineated by high cellular heterogeneity; it is resistant to conventional therapeutic regimens. In this study, the anti-cancer potential of garcinol, a naturally derived benzophenone, was assessed against GBM. During the analysis, we observed a reduction in the viability of rat glioblastoma C6 cells at a concentration of 30 µM of the extract (p < 0.001). Exposure to garcinol also induced nuclear fragmentation and condensation, as evidenced by DAPI-stained photomicrographs of C6 cells. The dissipation of mitochondrial membrane potential in a dose-dependent fashion was linked to the activation of caspases. Furthermore, it was observed that garcinol mediated the inhibition of NF-κB (p < 0.001) and decreased the expression of genes associated with cell survival (Bcl-XL, Bcl-2, and survivin) and proliferation (cyclin D1). Moreover, garcinol showed interaction with NF-κB through some important amino acid residues, such as Pro275, Trp258, Glu225, and Gly259 during molecular docking analysis. Comparative analysis with positive control (temozolomide) was also performed. We found that garcinol induced apoptotic cell death via inhibiting NF-κB activity in C6 cells, thus implicating it as a plausible therapeutic agent for GBM.

9.
Chemosphere ; 354: 141593, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460854

RESUMO

This study presents an innovative method for synthesizing activated carbon with an exceptionally high surface area (3359 m2 g-1) using kenaf fiber-based biochar through chemical activation. The achieved specific surface area surpasses activated carbon derived from other reported fiber-based precursors. The resulting activated carbon was investigated as electrodes for supercapacitors, revealing a remarkable maximum capacitance of 312 F g-1 at a current density of 0.5 A g-1. An aqueous symmetric supercapacitor employing these high-surface-area electrodes exhibited an outstanding energy density of 18.9 Wh kg-1 at a power density of 250 W kg-1. Notably, the supercapacitor retained exceptional capacitance, maintaining 93% of its initial capacitance even after 5000 charge-discharge cycles.


Assuntos
Carvão Vegetal , Hibiscus , Capacitância Elétrica , Eletrodos
10.
J Environ Manage ; 353: 120170, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38308991

RESUMO

The stress of pharmaceutical and personal care products (PPCPs) discharging to water bodies and the environment due to increased industrialization has reduced the availability of clean water. This poses a potential health hazard to animals and human life because water contamination is a great issue to the climate, plants, humans, and aquatic habitats. Pharmaceutical compounds are quantified in concentrations ranging from ng/Lto µg/L in aquatic environments worldwide. According to (Alsubih et al., 2022), the concentrations of carbamazepine, sulfamethoxazole, Lutvastatin, ciprofloxacin, and lorazepam were 616-906 ng/L, 16,532-21635 ng/L, 694-2068 ng/L, 734-1178 ng/L, and 2742-3775 ng/L respectively. Protecting and preserving our environment must be well-driven by all sectors to sustain development. Various methods have been utilized to eliminate the emerging pollutants, such as adsorption and biological and advanced oxidation processes. These methods have their benefits and drawbacks in the removal of pharmaceuticals. Successful wastewater treatment can save the water bodies; integrating green initiatives into the main purposes of actor firms, combined with continually periodic awareness of the current and potential implications of environmental/water pollution, will play a major role in water conservation. This article reviews key publications on the adsorption, biological, and advanced oxidation processes used to remove pharmaceutical products from the aquatic environment. It also sheds light on the pharmaceutical adsorption capability of adsorption, biological and advanced oxidation methods, and their efficacy in pharmaceutical concentration removal. A research gap has been identified for researchers to explore in order to eliminate the problem associated with pharmaceutical wastes. Therefore, future study should focus on combining advanced oxidation and adsorption processes for an excellent way to eliminate pharmaceutical products, even at low concentrations. Biological processes should focus on ideal circumstances and microbial processes that enable the simultaneous removal of pharmaceutical compounds and the effects of diverse environments on removal efficiency.


Assuntos
Cosméticos , Poluentes Químicos da Água , Purificação da Água , Humanos , Águas Residuárias , Poluentes Químicos da Água/análise , Cosméticos/análise , Purificação da Água/métodos , Água , Preparações Farmacêuticas
11.
Colloids Surf B Biointerfaces ; 235: 113793, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364521

RESUMO

Breast cancer is a global health concern that requires personalized therapies to prevent relapses, as conventional treatments may develop resistance over time. Photothermal therapy using spectral radiation or intense light emission is a broad-spectrum treatment that induces hyperthermia-mediated cancer cell death. MXene, a two-dimensional material, has been reported to have potential biological applications in photothermal therapy for cancer treatment. In this study, we investigated the apoptotic activity of MXene and UV-irradiated MXene in MCF-7 breast cancer cells by treating them with varying concentrations of MXene. The cytotoxicity of MXene and UV was evaluated by analyzing cellular morphology, nuclei condensation, caspase activation, and apoptotic cell death. We also assessed the effect of the combined treatment on the expression and cellular distribution of Tubulin, a key component of microtubules required for cell division. At low concentrations of MXene (up to 100 µg/ml), the level of cytotoxicity in MCF-7 cells was low. However, the combined treatment of MXene and UV resulted in a synergistic increase in cytotoxicity, causing rounded cellular morphology, condensed nuclei, caspase activation, and apoptotic cell death. Furthermore, the treatment reduced Tubulin protein expression and cellular distribution, indicating a potent inducer of cell death with potential application for cancer treatment. The study demonstrates that the combined treatment of MXene and UVB irradiation is a promising strategy for inducing apoptotic cell death in breast cancer cells, suggesting its potential as a therapeutic intervention for breast cancer.


Assuntos
Neoplasias da Mama , Nitritos , Elementos de Transição , Raios Ultravioleta , Humanos , Feminino , Tubulina (Proteína) , Neoplasias da Mama/metabolismo , Apoptose , Células MCF-7 , Caspase 3/metabolismo , Linhagem Celular Tumoral
13.
Med Chem ; 20(4): 443-451, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38279758

RESUMO

BACKGROUND: Non-Hodgkin lymphoma of B cell origin is the common type of lymphoma- related malignancy with poor response rate with conventional front-line therapies. AIM: The aim of the present study was to investigate the potential of new anti-inflammatory oxadiazole derivatives of Diclofenac as an anti-lymphoma agent through in vitro and in silico approaches. METHODS: Anti-lymphoma potential was evaluated by alamar blue technique. MTT assay employed for cytotoxicity. Gene and protein expression studies was performed by qRT-PCR and ELISA respectively. Docking studies was performed by using MOE program. RESULTS: Among five diclofenac derivatives, (II) showed promising anti-lymphoma effects, where it inhibited the expression of BCL-2, p-38 MAPK and TGF-ß in both follicular and Burkitt's lymphoma cells and was non-toxic against normal human fibroblast cells. The in silico studies against BCL-2 revealed that the unsubstituted Sulphur group in (II) is involved in the crucial interactions with the binding site residue. CONCLUSION: The compound (II) can be a potential therapeutic candidate for B-cell non-Hodgkin lymphoma and deserves further development as a novel anti-lymphoma agent.


Assuntos
Antineoplásicos , Proliferação de Células , Diclofenaco , Simulação de Acoplamento Molecular , Oxidiazóis , Humanos , Oxidiazóis/farmacologia , Oxidiazóis/química , Oxidiazóis/síntese química , Diclofenaco/farmacologia , Diclofenaco/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proliferação de Células/efeitos dos fármacos , Linfoma de Células B/tratamento farmacológico , Linfoma de Células B/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Linhagem Celular Tumoral , Simulação por Computador , Estrutura Molecular , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
J Biomol Struct Dyn ; : 1-15, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165437

RESUMO

Dihydrofolate reductase (DHFR) has gained significant attention in drug development, primarily due to marked distinctions in its active site among different species. DHFR plays a crucial role in both DNA and amino acid metabolism by facilitating the transfer of monocarbon residues through tetrahydrofolate, which is vital for nucleotide and amino acid synthesis. This considers its potential as a promising target for therapeutic interventions. In this study, our focus was on conducting a virtual screening of phytoconstituents from the IMPPAT2.0 database to identify potential inhibitors of DHFR. The initial criterion involved assessing the binding energy of molecules against DHFR and we screened top 20 compounds ranging energy -13.5 to -11.4 (kcal/Mol) while Pemetrexed disodium bound with less energy -10.2 (kcal/Mol), followed by an analysis of their interactions to identify more effective hits. We prioritized IMPHY007679 (Bismurrayaquinone-A), which displayed a high binding affinity and crucial interaction with DHFR. We also evaluated the drug-like properties and biological activity of IMPHY007679. Furthermore, MD simulation was done, RMSD, RMSF, Rg, SASA, PCA and FEL explore the time-evolution impact of IMPHY007679 comparing it with a reference drug, Pemetrexed disodium. Collectively, our findings suggest that IMPHY007679 recommend further investigation in both in vitro and in vivo settings for its potential in developing anticancer and antibacterial therapies. This compound holds promise as a valuable candidate for advancing drug research and treatment strategies.Communicated by Ramaswamy H. Sarma.

15.
J Pharm Pharmacol ; 76(1): 57-63, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-37978932

RESUMO

OBJECTIVES: To investigate the effect of blackseed oil (BSO) single dose on prednisolone pharmacokinetics via p-gp inhibition. METHODS: Three groups of rats (n = 5) were orally administered the vehicle, verapamil (50 mg/kg) or BSO (5 ml/kg) 15 min prior to prednisolone (5 mg/kg) administration. Blood samples were collected over 24 h and quantified. Non-compartmental analysis was employed to calculate maximum plasma concentration (Cmax), area under the curve (AUC0-last), time to reach Cmax (Tmax), apparent clearance (CL/F), and half-life (t1/2). Statistical significance was considered at p<0.05. RESULTS: Prednisolone Cmax and AUC0-last decreased by 65% and 25% in the BSO group compared to the negative control (P < .0001, .0029, respectively) while they increased by 1.75-folds and 8-folds in verapamil group (P < .0001). Tmax was achieved at 0.16, 0.5, and 0.25 h in the negative control, verapamil, and BSO-treated groups, respectively. CL/F in the treatment group was 1.3-fold and 10-fold higher compared to the negative and positive control, respectively, whereas the t1/2 remained comparable. CONCLUSION: Administration of BSO decreased prednisolone Cmax and AUC0-last in rats indicating that there is a herb-drug interaction; however, p-gp inhibition cannot be concluded. Patients relying on folk medicine in chronic illnesses treatment might need to avoid combining BSO with prednisolone.


Assuntos
Interações Ervas-Drogas , Prednisolona , Humanos , Ratos , Animais , Área Sob a Curva , Verapamil/farmacologia , Óleos de Plantas/farmacologia , Administração Oral
16.
Chemosphere ; 349: 140973, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38122940

RESUMO

The increasing demand for high-performance lithium-ion batteries (LIBs) has emphasized the need for affordable and sustainable materials, prompting the exploration of waste upcycling to address global sustainability challenges. In this study, we efficiently converted polypropylene (PP) plastic waste from used centrifuge tubes into activated polypropylene carbon (APC) using microwave-assisted pyrolysis. The synthesis of APC was optimized using response surface methodology/central composite design (RSM/CCD). Based on the RSM results, the optimal conditions for PP plastic conversion into carbon were determined as follows: HNO3 concentration of 3.5 M, microwave temperature of 230 °C, and holding time of 25 min. Under these conditions, the obtained intensity ratio of Id/Ig in PP carbon was 0.681 ± 0.013, with an error of 6.81 ± 0.013 % between predicted and actual values. The physicochemical studies, including FESEM-EDX, XRD, and Raman spectroscopy, confirmed the successful synthesis of APC samples. The APC 800 material exhibited a well-organized three-dimensional structure characterized by large pores and mesopores, enabling fast ion transport in the electrode. As a result, the APC 800 electrode demonstrated an initial discharge capacity of 381.0 mAh/g, an improved initial coulombic efficiency of 85.1%, and excellent cycling stability after 100 cycles. Notably, the APC 800 electrode displayed remarkable rate performance, showing a reversible capacity of 355.1 mAh/g when the current density was reset to 0.2 A/g, highlighting its high electrochemical reversibility. The outstanding characteristics of APC 800 as an anode electrode material for high-performance lithium-ion batteries suggest a promising future for its application in the field.


Assuntos
Carbono , Lítio , Micro-Ondas , Polipropilenos , Carvão Vegetal , Eletrodos , Íons
17.
Sci Rep ; 13(1): 21840, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071389

RESUMO

We theoretically propose a scheme to generate distant bipartite entanglement between various subsystems in coupled magnomechanical systems where both the microwave cavities are coupled through single photon hopping coupling strength Γ. Each cavity contains a magnon mode and phonon mode and this gives six excitation modes in our model Hamiltonian which are cavity-1 photons, cavity-2 photons, magnon and phonon in cavity-1, and magnon and phonon in cavity-2. We found that significant bipartite entanglement exists between indirectly coupled subsystems in coupled microwave cavities for an appropriate set of parameters regime. Moreover, we also obtain suitable cavity and magnon detuning parameters for a significant distant bipartite entanglement in different bipartitions. In addition, it can be seen that a single photon hopping parameter significantly affects both the degree as well as the transfer of quantum entanglement between various bipartitions. Hence, our present study related to coupled microwave cavity magnomechanical configuration will open new perspectives in coherent control of various quantum correlations including quantum state transfer among macroscopic quantum systems.

18.
J Biomol Struct Dyn ; : 1-13, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38127416

RESUMO

CDK6 is a critical protein involved in the regulation of the cell cycle, playing an important role in the progression from the G1 to S phase. In breast cancer, dysregulation of this protein is involved in tumour development and progression, particularly in hormone receptor-positive (HR+) breast cancers. The upregulation of CDK6 have been observed in a subset of breast cancers, leading to uncontrolled progression of the cell cycle and increased proliferation of cells. The purpose of this abstract is to provide an outline of CDK6's role. In breast cancer and the therapeutic strategies targeting CDK6 using specific selected inhibitors. To discover viable therapeutic candidates after competitive inhibition of CDK6 with a small molecular drug complex, high throughput screening and docking studies were used. Further, we carried the compounds based on ADMET properties and prediction of activity spectra for substances analysis. Finally, two different compounds were selected to carry out MD simulations. CDK6-IMPHY002642 and CDK6-IMPHY005260 are the two compounds that were identified. Overall, our results suggest that the CDK6-IMPHY002642 and CDK6-IMPHY005260 complex was relatively stable during the simulation. The compounds that have been found can also be further examined as potential therapeutic possibilities. The combined findings suggest that CDK6, together with their genetic changes, can be investigated in therapeutic interventions for precision oncology, leveraging early diagnostics and target-driven therapy.Communicated by Ramaswamy H. Sarma.

19.
J Biomol Struct Dyn ; : 1-14, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38100564

RESUMO

Inhibition of dipeptidyl peptidase-4 (DPP4) activity has emerged as a promising therapeutic approach for the treatment of type 2 diabetes mellitus (T2DM). Bioinformatics-driven approaches have emerged as crucial tools in drug discovery. Molecular docking and molecular dynamics (MD) simulations are effective tools in drug discovery, as they reduce the time and cost associated with experimental screening. In this study, we employed structure-assisted in-silico methods, including molecular docking and MD simulations, to identify SRT2183, a small molecule that may potentially inhibit the activity of DPP4 enzyme. The interaction between the small molecule "SRT2183" and DPP4 exhibited a binding affinity of -9.9 Kcal/Mol, leading to the formation of hydrogen bonds with the amino acid residues MET348, SER376, and THR351 of DPP4. The MD simulations over a period of 100 ns indicated stable protein-ligand interactions, with no significant conformational rearrangements observed within the simulated timeframe. In conclusion, our results suggest that the small molecule SRT2183 may have the potential to inhibit the DPP4 enzyme and pave the way for the therapeutics of T2DM.Communicated by Ramaswamy H. Sarma.

20.
Artif Cells Nanomed Biotechnol ; 51(1): 604-617, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37910394

RESUMO

Niosomes (NS) are the promising and novel carrier of the drug for effective transdermal delivery. Apigenin (AN) is a natural bioactive compound and has various pharmacological activities. AN is poorly water soluble which directly affects therapeutic efficacy. The aim of this research work was to develop the AN-NS gel to improve transdermal delivery. The thin-film hydration method was used for the development of AN-NS. The optimized AN-NS (AN-NS2) has a vesicle size of 272.56 ± 12.49 nm, PDI is 0.249, zeta potential is -38.7 mV, and entrapment efficiency of 86.19 ± 1.51%. The FTIR spectra of the AN-NS2 depicted that AN encapsulated in the NS matrix. AN-NS2 formulation was successfully incorporated into chitosan gel and evaluated. The optimized AN-NS2 gel (AN-NS2G4) has 2110 ± 14cps of viscosity, 10.40 ± 0.21g.cm/sec of spreadability, and 99.65 ± 0.53% of drug content. AN-NS2G4 displayed significantly (p < 0.05) higher AN released (67.64 ± 3.03%) than pure AN-gel (37.31 ± 2.87%). AN-NS2G4 showed the Korsmeyer Peppas release model. AN-NS2G4 displayed significantly (p < 0.05) higher antioxidant activity (90.72%) than pure AN (64.53%) at 300 µg/ml. AN-NS2G4 displayed significantly (p < 0.05) higher % inhibition of swelling than pane AN-gel in carrageenin-induced paw oedema in rats. The finding concluded that niosomes-laden gel is a good carrier of drugs to improve transdermal delivery and therapeutic efficacy.


Assuntos
Antioxidantes , Lipossomos , Ratos , Animais , Antioxidantes/farmacologia , Portadores de Fármacos , Apigenina/farmacologia , Administração Cutânea , Sistemas de Liberação de Medicamentos/métodos , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA