Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nat Chem Biol ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773330

RESUMO

The C-terminal to LisH (CTLH) complex is a ubiquitin ligase complex that recognizes substrates with Pro/N-degrons via its substrate receptor Glucose-Induced Degradation 4 (GID4), but its function and substrates in humans remain unclear. Here, we report PFI-7, a potent, selective and cell-active chemical probe that antagonizes Pro/N-degron binding to human GID4. Use of PFI-7 in proximity-dependent biotinylation and quantitative proteomics enabled the identification of GID4 interactors and GID4-regulated proteins. GID4 interactors are enriched for nucleolar proteins, including the Pro/N-degron-containing RNA helicases DDX21 and DDX50. We also identified a distinct subset of proteins whose cellular levels are regulated by GID4 including HMGCS1, a Pro/N-degron-containing metabolic enzyme. These data reveal human GID4 Pro/N-degron targets regulated through a combination of degradative and nondegradative functions. Going forward, PFI-7 will be a valuable research tool for investigating CTLH complex biology and facilitating development of targeted protein degradation strategies that highjack CTLH E3 ligase activity.

2.
Biochim Biophys Acta Gen Subj ; 1867(4): 130319, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36764586

RESUMO

Seven coronaviruses have infected humans (HCoVs) to-date. SARS-CoV-2 caused the current COVID-19 pandemic with the well-known high mortality and severe socioeconomic consequences. MERS-CoV and SARS-CoV caused epidemic of MERS and SARS, respectively, with severe respiratory symptoms and significant fatality. However, HCoV-229E, HCoV-NL63, HCoV-HKU1, and HCoV-OC43 cause respiratory illnesses with less severe symptoms in most cases. All coronaviruses use RNA capping to evade the immune systems of humans. Two viral methyltransferases, nsp14 and nsp16, play key roles in RNA capping and are considered valuable targets for development of anti-coronavirus therapeutics. But little is known about the kinetics of nsp10-nsp16 methyltransferase activities of most HCoVs, and reliable assays for screening are not available. Here, we report the expression, purification, and kinetic characterization of nsp10-nsp16 complexes from six HCoVs in parallel with previously characterized SARS-CoV-2. Probing the active sites of all seven by SS148 and WZ16, the two recently reported dual nsp14 / nsp10-nsp16 inhibitors, revealed pan-inhibition. Overall, our study show feasibility of developing broad-spectrum dual nsp14 / nsp10-nsp16-inhibitor therapeutics.


Assuntos
COVID-19 , Humanos , Metiltransferases/química , Pandemias , RNA , SARS-CoV-2/genética
3.
Protein Sci ; 31(9): e4395, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36040262

RESUMO

SARS-CoV-2 nsp10-nsp16 complex is a 2'-O-methyltransferase (MTase) involved in viral RNA capping, enabling the virus to evade the immune system in humans. It has been considered a valuable target in the discovery of antiviral therapeutics, as the RNA cap formation is crucial for viral propagation. Through cross-screening of the inhibitors that we previously reported for SARS-CoV-2 nsp14 MTase activity against nsp10-nsp16 complex, we identified two compounds (SS148 and WZ16) that also inhibited nsp16 MTase activity. To further enable the chemical optimization of these two compounds towards more potent and selective dual nsp14/nsp16 MTase inhibitors, we determined the crystal structure of nsp10-nsp16 in complex with each of SS148 and WZ16. As expected, the structures revealed the binding of both compounds to S-adenosyl-L-methionine (SAM) binding pocket of nsp16. However, our structural data along with the biochemical mechanism of action determination revealed an RNA-dependent SAM-competitive pattern of inhibition for WZ16, clearly suggesting that binding of the RNA first may help the binding of some SAM competitive inhibitors. Both compounds also showed some degree of selectivity against human protein MTases, an indication of great potential for chemical optimization towards more potent and selective inhibitors of coronavirus MTases.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Humanos , Metiltransferases/química , RNA Viral/metabolismo , Proteínas não Estruturais Virais/química
4.
Nat Chem Biol ; 18(1): 56-63, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34782742

RESUMO

Nuclear receptor-binding SET domain-containing 2 (NSD2) is the primary enzyme responsible for the dimethylation of lysine 36 of histone 3 (H3K36), a mark associated with active gene transcription and intergenic DNA methylation. In addition to a methyltransferase domain, NSD2 harbors two proline-tryptophan-tryptophan-proline (PWWP) domains and five plant homeodomains (PHDs) believed to serve as chromatin reading modules. Here, we report a chemical probe targeting the N-terminal PWWP (PWWP1) domain of NSD2. UNC6934 occupies the canonical H3K36me2-binding pocket of PWWP1, antagonizes PWWP1 interaction with nucleosomal H3K36me2 and selectively engages endogenous NSD2 in cells. UNC6934 induces accumulation of endogenous NSD2 in the nucleolus, phenocopying the localization defects of NSD2 protein isoforms lacking PWWP1 that result from translocations prevalent in multiple myeloma (MM). Mutations of other NSD2 chromatin reader domains also increase NSD2 nucleolar localization and enhance the effect of UNC6934. This chemical probe and the accompanying negative control UNC7145 will be useful tools in defining NSD2 biology.


Assuntos
Nucléolo Celular/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Sondas Moleculares/química , Domínios Proteicos , Proteínas Repressoras/metabolismo , Metilação , Mieloma Múltiplo/metabolismo , Nucleossomos/metabolismo
5.
SLAS Discov ; 26(9): 1200-1211, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34192965

RESUMO

The COVID-19 pandemic has clearly brought the healthcare systems worldwide to a breaking point, along with devastating socioeconomic consequences. The SARS-CoV-2 virus, which causes the disease, uses RNA capping to evade the human immune system. Nonstructural protein (nsp) 14 is one of the 16 nsps in SARS-CoV-2 and catalyzes the methylation of the viral RNA at N7-guanosine in the cap formation process. To discover small-molecule inhibitors of nsp14 methyltransferase (MTase) activity, we developed and employed a radiometric MTase assay to screen a library of 161 in-house synthesized S-adenosylmethionine (SAM) competitive MTase inhibitors and SAM analogs. Among six identified screening hits, SS148 inhibited nsp14 MTase activity with an IC50 value of 70 ± 6 nM and was selective against 20 human protein lysine MTases, indicating significant differences in SAM binding sites. Interestingly, DS0464 with an IC50 value of 1.1 ± 0.2 µM showed a bisubstrate competitive inhibitor mechanism of action. DS0464 was also selective against 28 out of 33 RNA, DNA, and protein MTases. The structure-activity relationship provided by these compounds should guide the optimization of selective bisubstrate nsp14 inhibitors and may provide a path toward a novel class of antivirals against COVID-19, and possibly other coronaviruses.


Assuntos
COVID-19/genética , Exorribonucleases/genética , Ligação Proteica/genética , SARS-CoV-2/genética , Proteínas não Estruturais Virais/genética , Antivirais/farmacologia , Sítios de Ligação/genética , COVID-19/virologia , Humanos , Metilação , Pandemias , RNA Viral/genética , SARS-CoV-2/patogenicidade , Replicação Viral/genética
6.
SLAS Discov ; 26(6): 757-765, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33874769

RESUMO

Frequent outbreaks of novel coronaviruses (CoVs), highlighted by the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, necessitate the development of therapeutics that could be easily and effectively administered worldwide. The conserved mRNA-capping process enables CoVs to evade their host immune system and is a target for antiviral development. Nonstructural protein (nsp) 16 in complex with nsp10 catalyzes the final step of coronaviral mRNA capping through its 2'-O-methylation activity. Like other methyltransferases, the SARS-CoV-2 nsp10-nsp16 complex is druggable. However, the availability of an optimized assay for high-throughput screening (HTS) is an unmet need. Here, we report the development of a radioactivity-based assay for the methyltransferase activity of the nsp10-nsp16 complex in a 384-well format, kinetic characterization, and optimization of the assay for HTS (Z' factor = 0.83). Considering the high conservation of nsp16 across known CoV species, the potential inhibitors targeting the SARS-CoV-2 nsp10-nsp16 complex may also be effective against other emerging pathogenic CoVs.


Assuntos
Adenosina/análogos & derivados , Ensaios de Triagem em Larga Escala , Capuzes de RNA/antagonistas & inibidores , RNA Viral/antagonistas & inibidores , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas Virais Reguladoras e Acessórias/antagonistas & inibidores , Adenosina/química , Adenosina/farmacologia , COVID-19/virologia , Clonagem Molecular , Ensaios Enzimáticos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Metilação , Metiltransferases , Modelos Moleculares , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , SARS-CoV-2/genética , Trítio , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/química , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo
7.
SLAS Discov ; 26(5): 620-627, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33423577

RESUMO

SARS-CoV-2, the coronavirus that causes COVID-19, evades the human immune system by capping its RNA. This process protects the viral RNA and is essential for its replication. Multiple viral proteins are involved in this RNA capping process, including the nonstructural protein 16 (nsp16), which is an S-adenosyl-l-methionine (SAM)-dependent 2'-O-methyltransferase. Nsp16 is significantly active when in complex with another nonstructural protein, nsp10, which plays a key role in its stability and activity. Here we report the development of a fluorescence polarization (FP)-based RNA displacement assay for nsp10-nsp16 complex in a 384-well format with a Z' factor of 0.6, suitable for high-throughput screening. In this process, we purified the nsp10-nsp16 complex to higher than 95% purity and confirmed its binding to the methyl donor SAM, the product of the reaction, S-adenosyl-l-homocysteine (SAH), and a common methyltransferase inhibitor, sinefungin, using isothermal titration calorimetry (ITC). The assay was further validated by screening a library of 1124 drug-like compounds. This assay provides a cost-effective high-throughput method for screening the nsp10-nsp16 complex for RNA competitive inhibitors toward developing COVID-19 therapeutics.


Assuntos
Antivirais/farmacologia , Ensaios de Triagem em Larga Escala , RNA Viral/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas Virais Reguladoras e Acessórias/antagonistas & inibidores , Adenosina/análogos & derivados , Adenosina/farmacologia , Ligação Competitiva , COVID-19/virologia , Inibidores Enzimáticos/farmacologia , Polarização de Fluorescência , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Metiltransferases , Ligação Proteica , Capuzes de RNA/antagonistas & inibidores , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Transdução de Sinais , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo , Replicação Viral , Tratamento Farmacológico da COVID-19
8.
Artigo em Inglês | MEDLINE | ID: mdl-31300131

RESUMO

Small peptides require large carriers to stimulate the humoral immune system. The filamentous phages, such as M13, have been proposed as vectors for expressing and carrying these peptides on their capsid surface. M2e 2-9 (SLLTEVET) residues of the transmembrane protein M2 of Influenza A virus are conserved and considered as a suitable target for immunization against a wide range of Influenza A virus strains. Here, M2e (2-9) sequence of Influenza A virus was fused to the N-terminus of the major coat protein gpVIII of M13 phage and was used to immunize broiler chickens. The results showed that the SLLTEVET peptide on the surface of M13 phage was expressed, the hybrid phage was immunogenic and produced specific antibodies against M2e (2-9) in broiler chickens.


Assuntos
Bacteriófago M13/genética , Epitopos/imunologia , Vírus da Influenza A , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/veterinária , Proteínas da Matriz Viral/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/genética , Técnicas de Visualização da Superfície Celular , Galinhas/imunologia , Epitopos/genética , Imunogenicidade da Vacina , Infecções por Orthomyxoviridae/prevenção & controle , Proteínas Recombinantes de Fusão/imunologia , Proteínas da Matriz Viral/genética
9.
Daru ; 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30209759

RESUMO

To improve the efficiency of niosomal drug delivery, here we employed two tactics. First, niosomes were magnetized using Fe3O4@SiO2 mangnetic nanoparticles, and second, their surface was modified by PEGylation. PEGylation was intended for increasing the bioavailability of niosomes, and magnetization was used for rendering them capable of targeting specific tissues. These PEGylated magnetic niosomes were also loaded with Carboplatin, an antitumor drug. Next, these niosomes were studied in terms of size, morphology, zeta potential, and drug entrapment efficiency. Then, the in vitro drug release from these modified niosomes was compared to that of both naked and nonmagnetized niosomes. Interestingly, although loading of naked-niosomes with magnetic particles lead to an increase in the rate of drug release, PEGylation of these magnetized niosomes caused a more sustained drug release. Thus, PEGylation of magnetic niosomes, besides improving their bioavailability, caused a slower and sustained release of the drug over time. Finally, studying the in vitro effectives of niosomal formulations towards MCF-7, a breast cancer cell line, showed that PEGylated magnetic niosomes had a satisfactory toxicity towards these cells in the presence of an external magnetic field. In conclusion, PEGylated magnetic niosomes showed enhanced qualities regarding the controlled release and delivery of drug. Graphical abstract ᅟ.

10.
FEBS Lett ; 591(20): 3378-3390, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28862749

RESUMO

We coupled peptides from a CNBr digest of signal-sequenceless maltose-binding protein (MBP) to a surface plasmon resonance chip. SecA-N95, SecA-N68, and SecA-DM (which consists of only the DEAD Motor domains NBD1 and NBD2) bound to the immobilized peptides; ADP weakened the binding. SecA-DM, which lacks the 'preprotein cross-linking domain' (PPXD), displayed the most extensive binding, while an MBP-PPXD chimera showed no binding, demonstrating that the PPXD does not contribute to the binding. We characterized the sequence specificity using oriented peptide libraries; these results enabled synthesis of a 20-residue peptide that was used to recapitulate the results obtained with MBP-derived peptides. This study shows that there is a promiscuous and nucleotide-modulated peptide-binding site in the DEAD Motor domains of SecA.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Escherichia coli/metabolismo , Proteínas Ligantes de Maltose/química , Biblioteca de Peptídeos , Canais de Translocação SEC/química , Thermus thermophilus/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Expressão Gênica , Interações Hidrofóbicas e Hidrofílicas , Cinética , Proteínas Ligantes de Maltose/genética , Proteínas Ligantes de Maltose/metabolismo , Modelos Moleculares , Mutação , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Canais de Translocação SEC/genética , Canais de Translocação SEC/metabolismo , Proteínas SecA , Eletricidade Estática , Especificidade por Substrato , Termodinâmica , Thermus thermophilus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA