Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 31(7): 1466-1487, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31023841

RESUMO

The merging of distinct genomes, allopolyploidization, is a widespread phenomenon in plants. It generates adaptive potential through increased genetic diversity, but examples demonstrating its exploitation remain scarce. White clover (Trifolium repens) is a ubiquitous temperate allotetraploid forage crop derived from two European diploid progenitors confined to extreme coastal or alpine habitats. We sequenced and assembled the genomes and transcriptomes of this species complex to gain insight into the genesis of white clover and the consequences of allopolyploidization. Based on these data, we estimate that white clover originated ∼15,000 to 28,000 years ago during the last glaciation when alpine and coastal progenitors were likely colocated in glacial refugia. We found evidence of progenitor diversity carryover through multiple hybridization events and show that the progenitor subgenomes have retained integrity and gene expression activity as they traveled within white clover from their original confined habitats to a global presence. At the transcriptional level, we observed remarkably stable subgenome expression ratios across tissues. Among the few genes that show tissue-specific switching between homeologous gene copies, we found flavonoid biosynthesis genes strongly overrepresented, suggesting an adaptive role of some allopolyploidy-associated transcriptional changes. Our results highlight white clover as an example of allopolyploidy-facilitated niche expansion, where two progenitor genomes, adapted and confined to disparate and highly specialized habitats, expanded to a ubiquitous global presence after glaciation-associated allopolyploidization.


Assuntos
Genômica , Poliploidia , Trifolium/genética , Vias Biossintéticas/genética , Mapeamento Cromossômico , Flavonoides/biossíntese , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Geografia , Hibridização Genética , Camada de Gelo , Fatores de Tempo
2.
BMC Genomics ; 14: 388, 2013 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-23758831

RESUMO

BACKGROUND: White clover (Trifolium repens L.) is a temperate forage legume with an allotetraploid genome (2n=4×=32) estimated at 1093 Mb. Several linkage maps of various sizes, marker sources and completeness are available, however, no integrated map and marker set has explored consistency of linkage analysis among unrelated mapping populations. Such integrative analysis requires tools for homoeologue matching among populations. Development of these tools provides for a consistent framework map of the white clover genome, and facilitates in silico alignment with the model forage legume, Medicago truncatula. RESULTS: This is the first report of integration of independent linkage maps in white clover, and adds to the literature on methyl filtered GeneThresher®-derived microsatellite (simple sequence repeat; SSR) markers for linkage mapping. Gene-targeted SSR markers were discovered in a GeneThresher® (TrGT) methyl-filtered database of 364,539 sequences, which yielded 15,647 SSR arrays. Primers were designed for 4,038 arrays and of these, 465 TrGT-SSR markers were used for parental consensus genetic linkage analysis in an F1 mapping population (MP2). This was merged with an EST-SSR consensus genetic map of an independent population (MP1), using markers to match homoeologues and develop a multi-population integrated map of the white clover genome. This integrated map (IM) includes 1109 loci based on 804 SSRs over 1274 cM, covering 97% of the genome at a moderate density of one locus per 1.2 cM. Eighteen candidate genes and one morphological marker were also placed on the IM. Despite being derived from disparate populations and marker sources, the component maps and the derived IM had consistent representations of the white clover genome for marker order and genetic length. In silico analysis at an E-value threshold of 1e-20 revealed substantial co-linearity with the Medicago truncatula genome, and indicates a translocation between T. repens groups 2 and 6 relative to M. truncatula. CONCLUSIONS: This integrated genetic linkage analysis provides a consistent and comprehensive linkage analysis of the white clover genome, with alignment to a model forage legume. Associated marker locus information, particularly the homoeologue-specific markers, offers a new resource for forage legume research to enable genetic analysis and improvement of this forage and grassland species.


Assuntos
Mapeamento Cromossômico , Genômica , Medicago/genética , Alinhamento de Sequência , Trifolium/genética , Marcadores Genéticos/genética , Genoma de Planta/genética , Técnicas de Genotipagem , Repetições de Microssatélites/genética
3.
PLoS Genet ; 9(2): e1003323, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23468653

RESUMO

The fungal family Clavicipitaceae includes plant symbionts and parasites that produce several psychoactive and bioprotective alkaloids. The family includes grass symbionts in the epichloae clade (Epichloë and Neotyphodium species), which are extraordinarily diverse both in their host interactions and in their alkaloid profiles. Epichloae produce alkaloids of four distinct classes, all of which deter insects, and some-including the infamous ergot alkaloids-have potent effects on mammals. The exceptional chemotypic diversity of the epichloae may relate to their broad range of host interactions, whereby some are pathogenic and contagious, others are mutualistic and vertically transmitted (seed-borne), and still others vary in pathogenic or mutualistic behavior. We profiled the alkaloids and sequenced the genomes of 10 epichloae, three ergot fungi (Claviceps species), a morning-glory symbiont (Periglandula ipomoeae), and a bamboo pathogen (Aciculosporium take), and compared the gene clusters for four classes of alkaloids. Results indicated a strong tendency for alkaloid loci to have conserved cores that specify the skeleton structures and peripheral genes that determine chemical variations that are known to affect their pharmacological specificities. Generally, gene locations in cluster peripheries positioned them near to transposon-derived, AT-rich repeat blocks, which were probably involved in gene losses, duplications, and neofunctionalizations. The alkaloid loci in the epichloae had unusual structures riddled with large, complex, and dynamic repeat blocks. This feature was not reflective of overall differences in repeat contents in the genomes, nor was it characteristic of most other specialized metabolism loci. The organization and dynamics of alkaloid loci and abundant repeat blocks in the epichloae suggested that these fungi are under selection for alkaloid diversification. We suggest that such selection is related to the variable life histories of the epichloae, their protective roles as symbionts, and their associations with the highly speciose and ecologically diverse cool-season grasses.


Assuntos
Alcaloides , Claviceps , Epichloe , Alcaloides de Claviceps , Seleção Genética , Alcaloides/química , Alcaloides/classificação , Alcaloides/genética , Alcaloides/metabolismo , Claviceps/genética , Claviceps/metabolismo , Claviceps/patogenicidade , Epichloe/genética , Epichloe/metabolismo , Epichloe/patogenicidade , Alcaloides de Claviceps/genética , Alcaloides de Claviceps/metabolismo , Regulação Fúngica da Expressão Gênica , Hypocreales/genética , Hypocreales/metabolismo , Neotyphodium , Poaceae/genética , Poaceae/metabolismo , Poaceae/parasitologia , Simbiose/genética
4.
Genome Biol Evol ; 3: 1253-64, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21948396

RESUMO

Miniature inverted-repeat transposable elements (MITEs) are abundant repeat elements in plant and animal genomes; however, there are few analyses of these elements in fungal genomes. Analysis of the draft genome sequence of the fungal endophyte Epichloë festucae revealed 13 MITE families that make up almost 1% of the E. festucae genome, and relics of putative autonomous parent elements were identified for three families. Sequence and DNA hybridization analyses suggest that at least some of the MITEs identified in the study were active early in the evolution of Epichloë but are not found in closely related genera. Analysis of MITE integration sites showed that these elements have a moderate integration site preference for 5' genic regions of the E. festucae genome and are particularly enriched near genes for secondary metabolism. Copies of the EFT-3m/Toru element appear to have mediated recombination events that may have abolished synthesis of two fungal alkaloids in different epichloae. This work provides insight into the potential impact of MITEs on epichloae evolution and provides a foundation for analysis in other fungal genomes.


Assuntos
Elementos de DNA Transponíveis , Endófitos/genética , Genoma Fúngico , Hypocreales/genética , Sequências Repetidas Invertidas , Poaceae/microbiologia , Endófitos/isolamento & purificação , Evolução Molecular , Hypocreales/isolamento & purificação , Dados de Sequência Molecular
5.
Mol Nutr Food Res ; 54 Suppl 1: S62-74, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20440721

RESUMO

Increased levels of n-6 arachidonic acid (AA), a precursor of pro-inflammatory eicosanoids, have been found in the colon mucosa of inflammatory bowel disease patients when compared with healthy subjects. The hypothesis was that dietary AA would aggravate colon inflammation by changing expression of genes in inflammatory signaling pathways. AA-enriched diet was fed to IL10 gene-deficient (Il10-/-) mice, model of a inflammatory bowel disease, and compared with Il10-/- mice fed an oleic acid control diet. Effects of AA on gene expression profiles during colitis were examined using whole genome microarray analysis. Dietary AA decreased the expression levels of some colonic genes in ER stress, complement system, nuclear respiratory factor 2-mediated oxidative stress and positive acute phase response pathways compared with Il10-/- mice fed an oleic acid diet. AA increased the expression levels of fatty acid catabolism genes, but decreased that of lipid synthesis genes during colitis, likely by sterol regulatory element binding transcription factor 1 and target gene regulation. A link has been suggested between AA and reduction of intestinal fibrosis by down-regulating the expression levels of pro-inflammatory and fibrotic marker genes. Contrary to the hypothesis, these findings suggest that dietary AA, in the present experimental conditions, is not pro-inflammatory, reduces ER stress and protects colonocytes from oxidative stress in Il10-/- mice.


Assuntos
Ácido Araquidônico/farmacologia , Colo/fisiopatologia , Perfilação da Expressão Gênica , Inflamação/genética , Inflamação/fisiopatologia , Interleucina-10/deficiência , Animais , Ácido Araquidônico/administração & dosagem , Dieta , Modelos Animais de Doenças , Deleção de Genes , Regulação da Expressão Gênica , Genótipo , Humanos , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/fisiopatologia , Interleucina-10/genética , Mucosa Intestinal/patologia , Mucosa Intestinal/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Valores de Referência , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
6.
Fungal Genet Biol ; 44(11): 1180-90, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17561419

RESUMO

Neotyphodium and Epichloë spp are closely related asexual and sexual endophytic fungi, respectively, that form mutualistic associations with cool season grasses of the subfamily Pooideae. The endophytes confer a number of advantages to their hosts, but also can cause animal toxicoses and these effects are, in many cases, due to the production of fungal secondary metabolites. In filamentous fungi, secondary metabolite genes are commonly clustered and, for those pathways involved in non-ribosomal peptide synthesis, a non-ribosomal peptide synthetase (NRPS) gene is always found as a key component of the cluster. Members of this gene family encode large multifunctional enzymes that synthesize a diverse range of bioactive compounds and in numerous cases have been shown to serve as pathogenicity or virulence factors, in addition to suggested roles in niche adaptation. We have used a degenerate PCR approach to identify members of the NRPS gene family from symbiotic fungi of the Neotyphodium/Epichloë complex, and have shown that collectively, at least 12 NRPS genes exist within the genomes examined. This suggests that secondary metabolites are important during the life cycles of these fungi with their hosts. Indeed, both the ergovaline and peramine biosynthetic pathways, which confer competitive abilities to Neotyphodium and Epichloë symbioses, contain NRPS genes at their core. The distribution of these genes among different Neotyphodium/Epichloë lineages suggests that a common ancestor contributed most of the complement of NRPS genes, which have been either retained or lost during the evolution of these fungi.


Assuntos
Hypocreales/genética , Família Multigênica , Peptídeo Sintases/genética , Poaceae/microbiologia , Simbiose/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Hypocreales/metabolismo , Peptídeo Sintases/metabolismo , Poaceae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA