Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Antibiotics (Basel) ; 13(7)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39061305

RESUMO

Hospital-acquired infections, also known as nosocomial infections, include bloodstream infections, surgical site infections, skin and soft tissue infections, respiratory tract infections, and urinary tract infections. According to reports, Gram-positive and Gram-negative pathogenic bacteria account for up to 70% of nosocomial infections in intensive care unit (ICU) patients. Biofilm production is a main virulence mechanism and a distinguishing feature of bacterial pathogens. Most bacterial pathogens develop biofilms at the solid-liquid and air-liquid interfaces. An essential requirement for biofilm production is the presence of a conditioning film. A conditioning film provides the first surface on which bacteria can adhere and fosters the growth of biofilms by creating a favorable environment. The conditioning film improves microbial adherence by delivering chemical signals or generating microenvironments. Microorganisms use this coating as a nutrient source. The film gathers both inorganic and organic substances from its surroundings, or these substances are generated by microbes in the film. These nutrients boost the initial growth of the adhering bacteria and facilitate biofilm formation by acting as a food source. Coatings with combined antibacterial efficacy and antifouling properties provide further benefits by preventing dead cells and debris from adhering to the surfaces. In the present review, we address numerous pathogenic microbes that form biofilms on the surfaces of biomedical devices. In addition, we explore several efficient smart antiadhesive coatings on the surfaces of biomedical device-relevant materials that manage nosocomial infections caused by biofilm-forming microbial pathogens.

2.
Brain Sci ; 14(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39061415

RESUMO

Brain-derived neurotrophic factor (BDNF) and its downstream tropomyosin receptor kinase B (TrkB) signaling pathway play pivotal roles in the resilience and action of antidepressant drugs, making them prominent targets in psychiatric research. Oxidative stress (OS) contributes to various neurological disorders, including neurodegenerative diseases, stroke, and mental illnesses, and exacerbates the aging process. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant responsive element (ARE) serves as the primary cellular defense mechanism against OS-induced brain damage. Thus, Nrf2 activation may confer endogenous neuroprotection against OS-related cellular damage; notably, the TrkB/phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway, stimulated by BDNF-dependent TrkB signaling, activates Nrf2 and promotes its nuclear translocation. However, insufficient neurotrophin support often leads to the downregulation of the TrkB signaling pathway in brain diseases. Thus, targeting TrkB activation and the Nrf2-ARE system is a promising therapeutic strategy for treating neurodegenerative diseases. Phytochemicals, including indole-3-carbinol (I3C) and its metabolite, diindolylmethane (DIM), exhibit neuroprotective effects through BDNF's mimetic activity; Akt phosphorylation is induced, and the antioxidant defense mechanism is activated by blocking the Nrf2-kelch-like ECH-associated protein 1 (Keap1) complex. This review emphasizes the therapeutic potential of I3C and its derivatives for concurrently activating neuronal defense mechanisms in the treatment of neurodegenerative diseases.

3.
Heliyon ; 10(12): e32719, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975178

RESUMO

Microwave-assisted synthesis method was used to prepare europium hydroxide (Eu(OH)3) and different percentages of 1, 5, and 10 % nickel-doped Eu(OH)3 (Ni-Eu(OH)3) nanorods (NRs). X-ray diffraction study showed a hexagonal phase with an average crystallite size in the range of 21 - 35 nm for Eu(OH)3 and Ni-Eu(OH)3 NRs. FT-IR and Raman studies also confirmed the synthesis of Eu(OH)3 and Ni-Eu(OH)3. The synthesized materials showed rod-like morphology with an average length and diameter between 27 - 50 nm and 8 - 13 nm, respectively. The band gap energies of Ni-Eu(OH)3 NRs were reduced (4.06 - 3.50 eV), which indicates that the doping of Ni2+ ions has influenced the band gap energy of Eu(OH)3. The PL study exhibited PL quenching with Ni doping. The photocatalytic degradation of 4-nitrophenol (4-NP) by the synthesized materials under UV light irradiation was investigated, in which 10 % Ni-Eu(OH)3 NRs showed the best response. A kinetic study was also conducted which shows pseudo-first-order kinetics. Based on this, Ni-Eu(OH)3 NRs have shown a potential to be a UV-light active material for photocatalysis.

4.
Sci Rep ; 14(1): 16155, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997296

RESUMO

Copper indium sulfide (CuInS2) exhibits strong visible light absorption and thus has the potential for good photocatalytic activity; however, rapid charge recombination limits its practical usage. An intriguing strategy to overcome this issue is to couple CuInS2 with another semiconductor to form a heterojunction, which can improve the charge carrier separation and, hence, enhance the photocatalytic activity. In this study, photocatalysts comprising CuInS2 with a secondary CuS phase (termed CuInxSy) and CuInxSy loaded with ZnS (termed ZnS@CuInxSy) were synthesized via a microwave-assisted method. Structural and morphological characterization revealed that the ZnS@CuInxSy photocatalyst comprised tetragonal CuInS2 containing a secondary phase of hexagonal CuS, coupled with hexagonal ZnS. The effective band gap energy of CuInxSy was widened from 2.23 to 2.71 as the ZnS loading increased from 0 to 30%. The coupling of CuInxSy with ZnS leads to long-lived charge carriers and efficient visible-light harvesting properties, which in turn lead to a remarkably high activity for the photocatalytic degradation of brilliant green (95.6% in 5 h) and conversion of 4-nitrophenol to 4-nitrophenolate ions (95.4% in 5 h). The active species involved in these photocatalytic processes were evaluated using suitable trapping agents. Based on the obtained results, photocatalytic mechanisms are proposed that emphasize the importance of h+, O2•-, and OH- in photocatalytic processes using ZnS@CuInxSy.

5.
BMC Chem ; 18(1): 135, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39049130

RESUMO

Molybdenum sulfide (MoS2) and modified MoS2 with different percentages of CdS (10%, 30%, and 50% CdS@MoS2) were successfully synthesized and characterized. The photocatalytic performance of the MoS2 and CdS@MoS2 was evaluated by degrading brilliant green (BG), methylene blue (MB), and rhodamine B (RhB) dyes under visible light irradiation. Amongst the synthesized photocatalysts, 50% CdS@MoS2 exhibited the highest photocatalytic activity, degrading 97.6%, 90.3%, and 75.5% of BG, MB, and RhB dyes, respectively within 5 h. The active species involved in the degradation processes were investigated. All trapping agents inhibited BG and MB degradation to a similar extent, indicating that all of the probed active species play an important role in the degradation of BG and MB. In contrast, h+ and O2•- were found to be the main reactive species in the photocatalytic RhB degradation. A potential mechanism for the photocatalytic degradation of dyes using CdS@MoS2 has been proposed. This work highlights the potential of CdS@MoS2 as a photocatalyst for more efficient water remediation applications.

6.
Int J Antimicrob Agents ; 64(2): 107243, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908533

RESUMO

Polymicrobial biofilms are among the leading causes of antimicrobial treatment failure. In these biofilms, bacterial and fungal pathogens interact synergistically at the interspecies, intraspecies, and interkingdom levels. Consequently, combating polymicrobial biofilms is substantially more difficult compared to single-species biofilms due to their distinct properties and the resulting potential variation in antimicrobial drug efficiency. In recent years, there has been an increased focus on developing alternative strategies for controlling polymicrobial biofilms formed by bacterial and fungal pathogens. Current approaches for controlling polymicrobial biofilms include monotherapy (using either natural or synthetic compounds), combination treatments, and nanomaterials. Here, a comprehensive review of different types of polymicrobial interactions between pathogenic bacterial species or bacteria and fungi is provided along with a discussion of their relevance. The mechanisms of action of individual compounds, combination treatments, and nanomaterials against polymicrobial biofilms are thoroughly explored. This review provides various future perspectives that can advance the strategies used to control polymicrobial biofilms and their likely modes of action. Since the majority of research on combating polymicrobial biofilms has been conducted in vitro, it would be an essential step in performing in vivo tests to determine the clinical effectiveness of different treatments against polymicrobial biofilms.

7.
Res Microbiol ; : 104211, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38734157

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that produces two types of siderophores, pyoverdine and pyochelin, that play pivotal roles in iron scavenging from the environment and host cells. P. aeruginosa siderophores can serve as virulence factors and perform various functions. Several bacterial and fungal species are likely to interact with P. aeruginosa due to its ubiquity in soil and water as well as its potential to cause infections in plants, animals, and humans. Siderophores produced by P. aeruginosa play critical roles in iron scavenging for prokaryotic species (bacteria) and eukaryotic hosts (fungi, animals, insects, invertebrates, and plants) as well. This review provides a comprehensive discussion of the role of P. aeruginosa siderophores in interaction with prokaryotes and eukaryotes as well as their underlying mechanisms of action. The evolutionary relationship between P. aeruginosa siderophore recognition receptors, such as FpvA, FpvB, and FptA, and those of other bacterial species has also been investigated.

8.
ACS Omega ; 9(14): 16420-16428, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38617665

RESUMO

The microwave-assisted synthesis approach was used to synthesize Eu(OH)3 and Co-Eu(OH)3 nanorods. Various techniques were used to investigate the structural, optical, and morphological features of the Eu(OH)3 and Co-Eu(OH)3 NRs. Both Eu(OH)3 and Co-Eu(OH)3 NRs were found to be hexagonal with crystallite sizes ranging from 21 to 35 nm. FT-IR and Raman spectra confirmed the formation of Eu(OH)3 and Co-Eu(OH)3. Rod-shaped Eu(OH)3 and Co-Eu(OH)3 with average lengths and diameters ranging from 27 to 50 nm and 8 to 12 nm, respectively, were confirmed by TEM. The addition of Co was found to increase the particle size. Furthermore, with increased Co doping, the band gap energies of Co-Eu(OH)3 NRs were lowered (3.80-2.49 eV) in comparison to Eu(OH)3, and the PL intensities with Co doping were quenched, suggesting the lessening of electron/hole recombination. The effect of these altered properties of Eu(OH)3 and Co-Eu(OH)3 was observed through the photocatalytic degradation of brilliant green dye (BG) and photoelectrochemical activity. In the photocatalytic degradation of BG, 5% Co-Eu(OH)3 had the highest response. However, photoelectrochemical experiments suggested that 10% Co-Eu(OH)3 NRs showed improved activity when exposed to visible light. As a result, Co-Eu(OH)3 NRs have the potential to be a promising visible-light active material for photocatalysis.

9.
Sci Rep ; 14(1): 8269, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594323

RESUMO

Gadolinium hydroxide (Gd(OH)3) was synthesized via a microwave-assisted synthesis method. Nickel ion (Ni2+) was doped into Gd(OH)3, in which 4-12% Ni-Gd(OH)3 was synthesized, to study the effect of doping. The structural, optical, and morphological properties of the synthesized materials were analyzed. The crystallite sizes of the hexagonal structure of Gd(OH)3 and Ni-Gd(OH)3, which were 17-30 nm, were obtained from x-ray diffraction analysis. The vibrational modes of Gd(OH)3 and Ni-Gd(OH)3 were confirmed using Raman and Fourier-transform infrared spectroscopies. The band gap energy was greatly influenced by Ni-doping, in which a reduction of the band gap energy from 5.00 to 3.03 eV was observed. Transmission electron microscopy images showed nanorods of Gd(OH)3 and Ni-Gd(OH)3 and the particle size increased upon doping with Ni2+. Photocatalytic degradations of brilliant green (BG) and 4-nitrophenol (4-NP) under UV light irradiation were carried out. In both experiments, 12% Ni-Gd(OH)3 showed the highest photocatalytic response in degrading BG and 4-NP, which is about 92% and 69%, respectively. Therefore, this study shows that Ni-Gd(OH)3 has the potential to degrade organic pollutants.

10.
Microb Pathog ; 191: 106658, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643850

RESUMO

Pseudomonas aeruginosa is often identified as the causative agent in nosocomial infections. Their adapted resistance makes them strong towards antimicrobial treatments. They protect and empower their survival behind strong biofilm architecture that works as their armor toward antimicrobial therapy. Additionally, P. aeruginosa generates virulence factors, contributing to chronic infection and recalcitrant phenotypic characteristics. The current study utilizes the benevolence of nanotechnology to develop an alternate technique to control the spreading of P. aeruginosa by limiting its biofilm and virulence development. This study used a natural compound, tetramethylpyrazine, to generate gold nanoparticles. Tetramethylpyrazine-gold nanoparticles (Tet-AuNPs) were presented in spherical shapes, with an average size of 168 ± 52.49 nm and a zeta potential of -12.22 ± 2.06 mV. The minimum inhibition concentration (MIC) of Tet-AuNPs that proved more than 90 % effective in inhibiting P. aeruginosa was 256 µg/mL. Additionally, it also shows antibacterial activities against Staphylococcus aureus (MIC, 256 µg/mL), Streptococcus mutans (MIC, 128 µg/mL), Klebsiella pneumoniae (MIC, 128 µg/mL), Listeria monocytogenes (MIC, 256 µg/mL), and Escherichia coli (MIC, 256 µg/mL). The sub-MIC values of Tet-AuNPs significantly inhibited the early-stage biofilm formation of P. aeruginosa. Moreover, this concentration strongly affected hemolysis, protease activity, and different forms of motilities in P. aeruginosa. Additionally, Tet-AuNPs destroyed the well-established mature biofilm of P. aeruginosa. The expression of genes linked with the biofilm formation and virulence in P. aeruginosa treated with sub-MIC doses of Tet-AuNPs was shown to be significantly suppressed. Gene expression studies support biofilm- and virulence-suppressing effects of Tet-AuNPs at the phenotypic level.


Assuntos
Antibacterianos , Biofilmes , Ouro , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Pirazinas , Fatores de Virulência , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Ouro/química , Ouro/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Fatores de Virulência/genética , Antibacterianos/farmacologia , Antibacterianos/química , Pirazinas/farmacologia , Nanopartículas Metálicas/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Klebsiella pneumoniae/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/genética , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/genética
11.
Trends Biotechnol ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637243

RESUMO

Microbial infections are major human health issues, and, recently, the mortality rate owing to bacterial and fungal infections has been increasing. In addition to intrinsic and extrinsic antimicrobial resistance mechanisms, biofilm formation is a key adaptive resistance mechanism. Several bioactive compounds from marine organisms have been identified for use in biofilm therapy owing to their structural complexity, biocompatibility, and economic viability. In this review, we discuss recent trends in the application of marine natural compounds, marine-bioinspired nanomaterials, and marine polymer conjugates as possible therapeutic agents for controlling biofilms and virulence factors. We also comprehensively discuss the mechanisms underlying biofilm formation and inhibition of virulence factors by marine-derived materials and propose possible applications of novel and effective antibiofilm and antivirulence agents.

12.
Biofilm ; 7: 100192, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38544742

RESUMO

The increasing incidence of antimicrobial resistance exhibited by biofilm-forming microbial pathogens has been recognized as one of the major issues in the healthcare sector. In the present study, nanomaterial-based controlling the biofilm and virulence properties has been considered an alternative approach. Pyoverdine (PVD) isolated from the Pseudomonas aeruginosa was utilized as a biological corona to synthesize silver nanoparticles (AgNPs), which will be helpful in a targeted action to microbial pathogens due to the recognition of the corona of the nanoparticles by the pathogenic membrane. Synthesized PVD-AgNPs were spherical to irregular, with an average size value of 251.87 ± 21.8 nm and zeta potential with a value of -36.51 ± 0.69 mV. The MIC value of PVD-AgNPs towards P. aeruginosa, Listeria monocytogenes, Staphylococcus aureus, Streptococcus mutans, Escherichia coli, and Candida albicans in the standard and host-mimicking media were observed in decreasing order in a multi-fold, such as standard growth media > sputum > synthetic human urine > saliva. Both the initial stage and the well-established biofilms of these microbial pathogens have been effectively inhibited and eradicated by PVD-AgNPs. PVD-AgNPs increase the susceptibility of tetracycline, PVD, and amphotericin B towards established mature mono- and mixed-species biofilms of S. aureus and C. albicans. Additionally, PVD-AgNPs attenuate several virulence properties, such as inhibition of protease activity, motility, and PVD and pyocyanin production in P. aeruginosa. The inhibition of gene expression of biofilm and virulence-associated genes in P. aeruginosa validates its phenotypic effects.

13.
Foods ; 13(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338501

RESUMO

This study aimed to determine enzymes that effectively extract Chlorella pyrenoidosa proteins and optimize the processing conditions using response surface methods. Furthermore, the potential of enzymatically hydrolyzed C. pyrenoidosa protein extract (CPE) as a substitute protein source was investigated. The enzymatic hydrolysis conditions for protein extraction were optimized using single-factor analysis and a response surface methodology-Box-Behnken design. The R2 value of the optimized model was 0.9270, indicating the reliability of the model, and the optimal conditions were as follows: a hydrolysis temperature of 45.56 °C, pH 9.1, and a hydrolysis time of 49.85 min. The amino acid composition of CPE was compared to that of C. pyrenoidosa powder (CP), which was found to have a higher content of essential amino acids (EAA). The electrophoretic profiles of CP and CPE confirmed that CPE has a low molecular weight. Furthermore, CPE showed higher antioxidant activity and phenol content than CP, with ABTS and DPPH radical scavenging abilities of 69.40 ± 1.61% and 19.27 ± 3.16%, respectively. CPE had high EAA content, antioxidant activity, and phenol content, indicating its potential as an alternative protein source. Overall, in this study, we developed an innovative, ecofriendly, and gentle enzymatic hydrolysis strategy for the extraction and refinement of Chlorella proteins.

14.
Acta Biomater ; 178: 13-23, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38417645

RESUMO

Microbial pathogens cause persistent infections by forming biofilms and producing numerous virulence factors. Bacterial extracellular vesicles (BEVs) are nanostructures produced by various bacterial species vital for molecular transport. BEVs include various components, including lipids (glycolipids, LPS, and phospholipids), nucleic acids (genomic DNA, plasmids, and short RNA), proteins (membrane proteins, enzymes, and toxins), and quorum-sensing signaling molecules. BEVs play a major role in forming extracellular polymeric substances (EPS) in biofilms by transporting EPS components such as extracellular polysaccharides, proteins, and extracellular DNA. BEVs have been observed to carry various secretory virulence factors. Thus, BEVs play critical roles in cell-to-cell communication, biofilm formation, virulence, disease progression, and resistance to antimicrobial treatment. In contrast, BEVs have been shown to impede early-stage biofilm formation, disseminate mature biofilms, and reduce virulence. This review summarizes the current status in the literature regarding the composition and role of BEVs in microbial infections. Furthermore, the dual functions of BEVs in eliciting and suppressing biofilm formation and virulence in various microbial pathogens are thoroughly discussed. This review is expected to improve our understanding of the use of BEVs in determining the mechanism of biofilm development in pathogenic bacteria and in developing drugs to inhibit biofilm formation by microbial pathogens. STATEMENT OF SIGNIFICANCE: Bacterial extracellular vesicles (BEVs) are nanostructures formed by membrane blebbing and explosive cell lysis. It is essential for transporting lipids, nucleic acids, proteins, and quorum-sensing signaling molecules. BEVs play an important role in the formation of the biofilm's extracellular polymeric substances (EPS) by transporting its components, such as extracellular polysaccharides, proteins, and extracellular DNA. Furthermore, BEVs shield genetic material from nucleases and thermodegradation by packaging it during horizontal gene transfer, contributing to the transmission of bacterial adaptation determinants like antibiotic resistance. Thus, BEVs play a critical role in cell-to-cell communication, biofilm formation, virulence enhancement, disease progression, and drug resistance. In contrast, BEVs have been shown to prevent early-stage biofilm, disperse mature biofilm, and reduce virulence characteristics.


Assuntos
Biofilmes , Ácidos Nucleicos , Humanos , Virulência , Bactérias/metabolismo , Fatores de Virulência/metabolismo , Polissacarídeos , DNA , Progressão da Doença , Lipídeos
15.
Appl Microbiol Biotechnol ; 108(1): 203, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349556

RESUMO

The rapidly rising antimicrobial resistance (AMR) in pathogenic bacteria has become one of the most serious public health challenges, with a high death rate. Most pathogenic bacteria have been recognized as a source of AMR and a primary barrier to antimicrobial treatment failure due to the development of biofilms and the production of virulence factors. In this work, nanotechnology was employed as a substitute method to control the formation of biofilms and attenuate virulence features in Pseudomonas aeruginosa and Staphylococcus aureus. We synthesized biocompatible gold nanoparticles from marine-derived laminarin as potential biofilm and virulence treatments. Laminarin-gold nanoparticles (Lam-AuNPs) have been identified as spherical, 49.84 ± 7.32 nm in size and - 26.49 ± 1.29 mV zeta potential. The MIC value of Lam-AuNPs against several drug-resistant microbial pathogens varied from 2 to 1024 µg/mL in both standard and host-mimicking media. Sub-MIC values of Lam-AuNPs were reported to effectively reduce the production of P. aeruginosa and S. aureus biofilms in both standard and host-mimicking growth media. Furthermore, the sub-MIC of Lam-AuNPs strongly reduced hemolysis, pyocyanin, pyoverdine, protease, and several forms of flagellar and pili-mediated motility in P. aeruginosa. Lam-AuNPs also inhibited S. aureus hemolysis and the production of amyloid fibrils. The Lam-AuNPs strongly dispersed the preformed mature biofilm of these pathogens in a dose-dependent manner. The Lam-AuNPs would be considered an alternative antibiofilm and antivirulence agent to control P. aeruginosa and S. aureus infections. KEY POINTS: • Lam-AuNPs were biosynthesized to control biofilm and virulence. • Lam-AuNPs show effective biofilm inhibition in standard and host-mimicking media. • Lam-AuNPs suppress various virulence factors of P. aeruginosa and S. aureus.


Assuntos
Anti-Infecciosos , Glucanos , Nanopartículas Metálicas , Humanos , Ouro/farmacologia , Hemólise , Staphylococcus aureus , Biofilmes , Fatores de Virulência
16.
ACS Omega ; 9(1): 157-165, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38222507

RESUMO

A mixture of three distinct cerium precursors (Ce(NO3)3·6H2O, CeCl3·7H2O, and Ce(CH3COO)3·H2O) was used to prepare cerium oxide nanoparticles (CeO2 NPs) in a polyol-mediated synthesis. Different ratios of diethylene glycol (DEG) and H2O were utilized in the synthesis. The properties of the synthesized CeO2 NPs, such as structural and morphological properties, were investigated to observe the effect of the mixed cerium precursors. Crystallite sizes of 7-8 nm were obtained for all samples, and all synthesized samples were confirmed to be in the cubic phase. The average particle sizes of the spherical CeO2 were between 9 and 13 nm. The successful synthesis of CeO2 can also be confirmed via the vibrational band of Ce-O from the FTIR. Antidiabetic properties of the synthesized CeO2 NPs were investigated using α-glucosidase enzyme inhibition assay, and the concentration of the synthesized CeO2 NPs was varied in the study. The biocompatibility properties of the synthesized CeO2 NPs were investigated via cytotoxicity tests, and it was found that all synthesized materials showed no cytotoxic properties at lower concentrations (62.5-125 µg/mL).

17.
Biofilm ; 7: 100171, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38197082

RESUMO

There is a growing interest in using sweeteners for taste improvement in the food and drink industry. Sweeteners were found to regulate the formation or dispersal of structural components of microbial biofilms. Dietary sugars may enhance biofilm formation and facilitate the development of antimicrobial resistance, which has become a major health issue worldwide. In contrast, bulk and non-nutritive sweeteners are also beneficial for managing microbial infections. This review discusses the clinical significance of oral biofilms formed upon the administration of nutritive and non-nutritive sweeteners. The underlying mechanism of action of sweeteners in the regulation of mono- or poly-microbial biofilm formation and destruction is comprehensively discussed. Bulk and non-nutritive sweeteners have also been used in conjunction with antimicrobial substances to reduce microbial biofilm formation. Formulations with bulk and non-nutritive sweeteners have been demonstrated to be particularly efficient in this regard. Finally, future perspectives with respect to advancing our understanding of mechanisms underlying biofilm regulation activities of sweeteners are presented as well. Several alternative strategies for the application of bulk sweeteners and non-nutritive sweeteners have been employed to control the biofilm-forming microbial pathogens. Gaining insight into the underlying mechanisms responsible for enhancing or inhibiting biofilm formation and virulence properties by both mono- and poly-microbial species in the presence of the sweetener is crucial for developing a therapeutic agent to manage microbial infections.

18.
Microb Pathog ; 188: 106546, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278457

RESUMO

Nanomaterials derived from seaweed have developed as an alternative option for fighting infections caused by biofilm-forming microbial pathogens. This research aimed to discover potential seaweed-derived nanomaterials with antimicrobial and antibiofilm action against bacterial and fungal pathogens. Among seven algal species, the extract from Eisenia bicyclis inhibited biofilms of Klebsiella pneumoniae, Staphylococcus aureus, and Listeria monocytogenes most effectively at sub-MIC levels. As a result, in the present study, E. bicyclis was chosen as a prospective seaweed for producing E. bicyclis-gold nanoparticles (EB-AuNPs). Furthermore, the mass spectra of E. bicyclis reveal the presence of a number of potentially beneficial chemicals. The polyhedral shape of the synthesized EB-AuNP with a size value of 154.74 ± 33.46 nm was extensively described. The lowest inhibitory concentration of EB-AuNPs against bacterial pathogens (e.g., L.monocytogenes, S. aureus, Pseudomonas aeruginosa, and K. pneumoniae) and fungal pathogens (Candida albicans) ranges from 512 to >2048 µg/mL. Sub-MIC of EB-AuNPs reduces biofilm formation in P. aeruginosa, K. pneumoniae, L. monocytogenes, and S. aureus by 57.22 %, 58.60 %, 33.80 %, and 91.13 %, respectively. EB-AuNPs eliminate the mature biofilm of K. pneumoniae at > MIC, MIC, and sub-MIC concentrations. Furthermore, EB-AuNPs at the sub-MIC level suppress key virulence factors generated by P. aeruginosa, including motility, protease activity, pyoverdine, and pyocyanin, whereas it also suppresses the production of staphyloxanthin virulence factor from S. aureus. The current research reveals that seaweed extracts and a biocompatible seaweed-AuNP have substantial antibacterial, antibiofilm, and antivirulence actions against bacterial and fungal pathogens.


Assuntos
Anti-Infecciosos , Algas Comestíveis , Kelp , Nanopartículas Metálicas , Alga Marinha , Ouro/farmacologia , Ouro/química , Staphylococcus aureus , Estudos Prospectivos , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Biofilmes , Alga Marinha/química , Fatores de Virulência , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa
19.
Int J Biol Macromol ; 254(Pt 1): 127833, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37918595

RESUMO

Vibrio species are motile gram-negative bacteria commonly found in aquatic environments. Vibrio species include pathogenic as well as non-pathogenic strains. Pathogenic Vibrio species have been reported in invertebrates and humans, whereas non-pathogenic strains are involved in symbiotic relationships with their eukaryotic hosts. These bacteria are also able to adapt to fluctuations in temperature, salinity, and pH, in addition to oxidative stress, and osmotic pressure in aquatic ecosystems. Moreover, they have also developed protective mechanisms against the immune systems of their hosts. Vibrio species accomplish adaptation to changing environments outside or inside the host by altering their gene expression profiles. To this end, several sigma factors specifically regulate gene expression, particularly under stressful environmental conditions. Moreover, other sigma factors are associated with biofilm formation and virulence as well. This review discusses different types of sigma and anti-sigma factors of Vibrio species involved in virulence and regulation of gene expression upon changes in environmental conditions. The evolutionary relationships between sigma factors with various physiological roles in Vibrio species are also discussed extensively.


Assuntos
Fator sigma , Vibrio , Humanos , Fator sigma/genética , Fator sigma/metabolismo , Ecossistema , Vibrio/metabolismo , Estresse Oxidativo , Virulência/genética , Regulação Bacteriana da Expressão Gênica
20.
Colloids Surf B Biointerfaces ; 234: 113727, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38157766

RESUMO

Bacterial and fungal pathogens forming oral biofilms present significant public health challenges due to the failure of antimicrobial drugs. The ability of biofilms to lower pH levels results in dental plaque, leading to gingivitis and cavities. Nanoparticles (NPs) have attracted considerable interest for drug delivery and, thus, as a solution to biofilm-related microbial infections. A novel strategy in this regard involves using pH-responsive polymeric NPs within the acidic microenvironment of oral biofilms. The acidity of the oral biofilm microenvironment is governed by carbohydrate metabolism, accumulation of lactic acid, and extracellular DNA of extracellular polymeric substances by oral biofilm-forming microbial pathogens. This acidity also provides an opportunity to enhance antibacterial activity against biofilm cells using pH-responsive drug delivery approaches. Thus, various polymeric NPs loaded with poorly soluble drugs and responsive to the acidic pH of oral biofilms have been developed. This review focuses on various forms of such polymeric NPs loaded with drugs. The fundamental mechanisms of action of pH-responsive polymeric NPs, their cytological toxicity, and in vivo efficacy testing are thoroughly discussed.


Assuntos
Anti-Infecciosos , Nanopartículas , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Biofilmes , Polímeros/química , Nanopartículas/química , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA