Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Genet Metab Rep ; 39: 101078, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38571879

RESUMO

Leigh syndrome is a severe progressive mitochondrial disorder mainly affecting children under the age of 5 years. It is caused by pathogenic variants in any one of more than 75 known genes in the nuclear or mitochondrial genomes. A 19-week-old male infant presented with lactic acidosis and encephalopathy following a 2-week history of irritability, neuroregression and poor weight gain. He was hypotonic with pathological reflexes, impaired vision, and nystagmus. Brain MRI showed extensive bilateral symmetrical T2 hyperintense lesions in basal ganglia, thalami, and brainstem. Metabolic workup showed elevated serum alanine, and heavy lactic aciduria with increased ketones, fumarate, malate, and alpha-ketoglutarate as well as reduced succinate on urine organic acid analysis. Lactic acidemia persisted, with only a marginally elevated lactate:pyruvate ratio (16.46, ref. 0-10). He demised at age 7 months due to respiratory failure. Exome sequencing followed by virtual gene panel analysis for pyruvate metabolism and mitochondrial defects could not identify any nuclear cause for Leigh syndrome. Mitochondrial DNA (mtDNA) genome sequencing revealed 88% heteroplasmy for a novel variant, NC_012920.1(MT-ND6):m.14430A>C p.(Trp82Gly), in blood DNA. This variant was absent from the unaffected mother's blood, fibroblast, and urine DNA, and detected at a level of 5% in her muscle DNA. Mitochondrial respiratory chain analysis revealed markedly reduced mitochondrial complex I activity in patient fibroblasts (34% of parent and control cells), and reduced NADH-linked respirometry (less than half of parental and control cells), while complex II driven respirometry remained intact. The combined clinical, genetic, and biochemical findings suggest that the novel MT-ND6 variant is the likely cause of Leigh syndrome in this patient. The mitochondrial ND6 protein is a subunit of complex I. An interesting finding was the absence of a significantly elevated lactate:pyruvate ratio in the presence of severe lactatemia, which directed initial diagnostic efforts towards excluding a pyruvate metabolism defect. This case highlights the value of a multidisciplinary approach and complete genetic workup to diagnosing mitochondrial disorders in South African patients.

2.
J Clin Pathol ; 75(1): 34-38, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33115810

RESUMO

AIMS: Mitochondrial diseases form one of the largest groups of inborn errors of metabolism. The birth prevalence is approximately 1/5000 in well-studied populations, but little has been reported from Sub-Saharan Africa. The aim of this study was to describe the genetics underlying mitochondrial disease in South Africa. METHODS: An audit was performed on all mitochondrial disease genetic testing performed in Cape Town, South Africa. RESULTS: Of 1614 samples tested for mitochondrial DNA (mtDNA) or nuclear DNA (nDNA) variants in South Africa between 1994 and 2019, there were 155 (9.6 %) positive results. Pathogenic mtDNA variants accounted for 113 (73%)/155, from 96 families. Mitochondrial encephalopathy with lactic acidosis and stroke-like episodes, 37 (33%)/113, Leber's hereditary optic neuropathy, 26 (23%)/113, and single large mtDNA deletions, 22 (20%)/113, accounted for 76%. Thirty eight of 42 nDNA-positive results were homozygous for the MPV17 pathogenic variant c.106C>T (p.[Gln36Ter, Ser25Profs*49]) causing infantile neurohepatopathy, one of the largest homozygous groups reported in the literature. The other nDNA variants were in TAZ1, CPT2, BOLA3 and SERAC1. None were identified in SURF1, POLG or PDHA1. CONCLUSIONS: Finding a large group with a homozygous nuclear pathogenic variant emphasises the importance of looking for possible founder effects. The absence of other widely described pathogenic nDNA variants in this cohort may be due to reduced prevalence or insufficient testing. As advances in therapeutics develop, it is critical to develop diagnostic platforms on the African subcontinent so that population-specific genetic variations can be identified.


Assuntos
Variação Genética , Proteínas de Membrana/genética , Doenças Mitocondriais/genética , Encefalomiopatias Mitocondriais/genética , Proteínas Mitocondriais/genética , Atrofia Óptica Hereditária de Leber/genética , Acidose Láctica/genética , Acidose Láctica/patologia , África Subsaariana , Núcleo Celular/genética , Estudos de Coortes , Testes Genéticos , Homozigoto , Humanos , Mitocôndrias/genética , Doenças Mitocondriais/patologia , Encefalomiopatias Mitocondriais/patologia , Mutação , Atrofia Óptica Hereditária de Leber/patologia
3.
Mol Genet Metab Rep ; 24: 100629, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32742935

RESUMO

Pyruvate dehydrogenase complex (PDHC) deficiencies are a group of mainly infantile onset disorders stemming from defects in pyruvate catabolism. They are characterised by severe lactic acidosis and progressive neurodegeneration.Although the PDHA1 gene is implicated in most cases of PDHC deficiency worldwide, no pathogenic variants have been reported in South African patients to date, despite availability of PDHA1 sequencing in the state diagnostic setting. METHODS: DNA from five patients with low to absent PDHC activity in fibroblasts were subjected to PDHC deficiency gene panel analysis. Included in the panel were: PDHA1, PDHB, DLAT, DLD, PDHX, BOLA3, GLRX5, IBA57, LIAS, LIPT1, LIPT2, NFU1, PDP1, PDP2, SLC19A2, SLC19A3, SLC25A19, SLC25A26, TPK1 and FBXL4. RESULTS: No pathogenic variants were identified in 4 out of 5 cases investigated. A homozygous frame-shift mutation was detected in the BOLA3 gene in one patient, supporting a diagnosis of multiple mitochondrial dysfunction syndrome type 2. DISCUSSION: A single, novel, homozygous BOLA3 frame-shift mutation was detected in a black South African child with severe neurodegenerative disease and very low to absent PDHC enzyme activity. This finding of a homozygous mutation in a patient from a non-consanguineous background may indicate a need for further investigation in clinically similar cases as well as heterozygous carrier rates in unaffected individuals from the same ethnic background.The paucity of identifiable mutations in 4 out of 5 South African patients with confirmed PDHC deficiency highlights the dangers in relying on Western population based genetic panels for diagnosing rare metabolic disease in genetically understudied populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA