Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Daru ; 29(2): 483-492, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34495496

RESUMO

PURPOSE: Pancreatic ß-cells protection is integral to insulin secretion in diabetic conditions. In this context, we investigated cinnamic acid in combination with nicotinamide on the regulation of insulin secretion and apoptosis in pancreatic ß-cells using streptozotocin (STZ)-induced apoptotic model in vivo. METHODS: The pancreata of nicotinamide (NA)-cinnamic acid (CA) treated rats were studied using histopathological, immunofluorescence, molecular docking, and RT-PCR analyses, supported by serum glucose and insulin levels. RESULTS: The biochemical data revealed that the acute treatment of NA and CA in combination significantly increased serum insulin, thereby lowering blood glucose level in vivo. From histological findings, NA-CA pre-treatment displayed significant protection against STZ-apoptotic trends, improved insulin secretion, and recapitulated the STZ-induced morphology to normal control. The upregulated expressions of caspases, caused by STZ-treatments, were significantly downregulated with NA-CA in immunofluorescent detection and their translational levels, respectively. We found dense ERK½-insulin staining and p-ERK½ expression, which was further supported by strong ERK½ residues-ligands interactions based on in silico analysis. CONCLUSION: From the pre-clinical data, we thus conclude that NA-CA cocktail exerts dual insulin releasing and survival effects in pancreatic ß-cells by targeting ERK½ pathway.


Assuntos
Cinamatos/administração & dosagem , Diabetes Mellitus Experimental/tratamento farmacológico , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/citologia , Niacinamida/administração & dosagem , Estreptozocina/efeitos adversos , Animais , Apoptose/efeitos dos fármacos , Glicemia/análise , Sobrevivência Celular , Cinamatos/farmacologia , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Regulação da Expressão Gênica/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Simulação de Acoplamento Molecular , Niacinamida/farmacologia , Ratos , Resultado do Tratamento
2.
Eur J Pharm Sci ; 153: 105492, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32730843

RESUMO

cAMP-dependent guanine nucleotide exchange factor (Epac) is a key regulator in signal transduction and represents an excellent drug target to be investigated against various diseases. To date, very few modulators selective for Epac are available; however, there is still an unmet need of isoform-selective inhibitors. In the present study, ligand-based pharmacophores were designed to investigating structurally diverse molecules as Epac2 inhibitors. Pharmacophore models were developed using reported allosteric site inhibitors. The developed models were used to screen 95 thousand compounds from the National Cancer Institute (NCI), Maybride, and our in-house ICCBS Database. The binding mode and efficiency of the screened hits was investigated using molecular docking simulation on the allosteric site of Epac2 apo-protein (PDB ID: 2BYV) followed by ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) profiling Furthermore, obtained in silico screened hits were subjected to in vitro assay for insulin secretion. We identified, three lead molecules RDR02145, AAK-399, and AAD-026 reducing, insulin secretion. Remarkably, a higher inhibitory effect on insulin secretion was observed in AAK-399, and AAD-026 as compared to that of standard Epac2 non-competitive allosteric site inhibitor, MAY0132. Furthermore, Dynamic simulation studies of lead compounds proved the structural stability of the Epac2 auto-inhibited state. These findings underline the potential of these compounds as valuable pharmacological tools for designing future selective probes to inhibit the Epac-mediated signaling pathway.


Assuntos
Fatores de Troca do Nucleotídeo Guanina , Transdução de Sinais , Ligantes , Simulação de Acoplamento Molecular , Isoformas de Proteínas/metabolismo
3.
Eur J Pharmacol ; 858: 172514, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31265841

RESUMO

Recently, we reported the role of coixol (6-methoxy-2(3H)-benzoxazolone), an alkaloid from Scoparia dulcis, in glucose-dependent insulin secretion; however, its insulin secretory mechanism(s) remained unknown. Here, we explored the insulinotropic mechanism(s) of coixol in vitro and in vivo. Mice islets were batch incubated, perifused with coixol in the presence of agonists/antagonists, and insulin secretion was measured by ELISA. Intracellular cAMP levels were measured using enzyme immunoassay. K+- and Ca2+-currents were recorded in MIN6 cells using whole-cell patch-clamp technique. The in vivo glucose tolerance and the insulinogenic index were evaluated in diabetic rats treated with coixol at 25 and 50 mg/kg, respectively. Coixol, unlike sulfonylurea, enhanced insulin secretion in batch incubated and perifused islets at high glucose, with no effect at basal glucose concentrations. Coixol showed no pronounced effect on the inward rectifying K+- and Ca2+-currents in whole-cell patch recordings. Moreover, coixol-induced insulin secretion was further amplified in the depolarized islets. Coixol showed an additive effect with forskolin (10 µM)-induced cAMP level, and in insulin secretion; however, no additive effect was observed with isobutylmethylxanthine (IBMX, 100 µM)-induced cAMP level, nor in insulin secretion. The PKA inhibitor H-89 (50 µM), and Epac2 inhibitor MAY0132 (50 µM) significantly inhibited the coixol-induced insulin secretion (P < 0.01). Furthermore, insulin secretory kinetics revealed that coixol potentiates insulin secretion in both early and late phases of insulin secretion. In diabetic animals, coixol showed significant improvement in glucose tolerance and on fasting blood glucose levels. These data suggest that coixol amplifies glucose-stimulated insulin secretion by cAMP-mediated signaling pathways.


Assuntos
Benzoxazóis/farmacologia , AMP Cíclico/metabolismo , Glucose/farmacologia , Secreção de Insulina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Glicemia/metabolismo , Canais de Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/fisiopatologia , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Potássio/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA