Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 970
Filtrar
1.
Front Pharmacol ; 15: 1424175, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39005934

RESUMO

Histone deacetylase 3 (HDAC3) is a member of the histone deacetylase family that has emerged as a crucial target in the quest for novel therapeutic interventions against various complex diseases, including cancer. The repositioning of FDA-approved drugs presents a promising avenue for the rapid discovery of potential HDAC3 inhibitors. In this study, we performed a structure-based virtual screening of FDA-approved drugs obtained from DrugBank. Candidate hits were selected based on their binding affinities and interactions with HDAC3. These promising hits were then subjected to a comprehensive assessment of their biological properties and drug profiles. Our investigation identified two FDA-approved drugs, Imatinib and Carpipramine, characterized by their exceptional affinity and specificity for the binding pocket of HDAC3. These molecules demonstrated a strong preference for HDAC3 binding site and formed interactions with functionally significant residues within the active site pocket. To gain deeper insights into the binding dynamics, structural stability, and interaction mechanisms, we performed molecular dynamics (MD) simulations spanning 300 nanoseconds (ns). The results of MD simulations indicated that Imatinib and Carpipramine stabilized the structure of HDAC3 and induced fewer conformational changes. Taken together, the findings from this study suggest that Imatinib and Carpipramine may offer significant therapeutic potential for treating complex diseases, especially cancer.

2.
BMC Public Health ; 24(1): 1870, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003451

RESUMO

Despite domestic violence and related homicides perpetrated by partners and/or in-laws being a significant public health problem in India, there are no reliable and valid instruments to identify and intervene with women in domestic violence relationships. Continued domestic violence can escalate to severe, near-lethal, or lethal violence or homicide. The Danger Assessment (DA) is a risk assessment instrument designed to assess the likelihood of severe, near-lethal, or lethal violence in abusive relationships. However, the DA is not designed to determine the risk of future severe, near-lethal, or lethal violence by in-laws. In-law abuse plays a significant role in domestic violence-related homicides in India and other countries with similar cultural norms. This study addressed this gap by developing the Danger Assessment for in-laws (DA-L) to assess risk from in-laws, alongside the Danger Assessment for Women in India (DA-WI) to assess risk from partners. The study also examined the psychometric properties of the DA-L and DA-WI. Longitudinal data from 150 women in India were used to measure the reliability and validity of the two versions of the DA. The original DA items and additional risk items were examined using relative risk ratios for their relationship with severe violence at three-month follow-ups. Predictive validity was tested with the receiver operating characteristic curve. The study resulted in reliable and valid measures (11 items DA-L and 26-items DA-WI) of risk. The versions of the DA can be useful for practitioners in India and those working with Indian women in the US and other countries. The DAs can be used for identifying women in domestic violence relationships who are at risk for future severe domestic violence and guide the provision of tailored safety plans.


Assuntos
Violência Doméstica , Homicídio , Humanos , Feminino , Índia/epidemiologia , Medição de Risco , Adulto , Homicídio/estatística & dados numéricos , Homicídio/psicologia , Violência Doméstica/estatística & dados numéricos , Violência Doméstica/psicologia , Adulto Jovem , Psicometria , Pessoa de Meia-Idade , Violência por Parceiro Íntimo/estatística & dados numéricos , Violência por Parceiro Íntimo/psicologia , Adolescente , Reprodutibilidade dos Testes , Masculino , Maus-Tratos Conjugais/estatística & dados numéricos , Maus-Tratos Conjugais/psicologia , Inquéritos e Questionários
3.
Mol Neurobiol ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009798

RESUMO

Alzheimer's disease (AD) poses a significant health challenge worldwide, affecting millions of individuals, and projected to increase further as the global population ages. Current pharmacological interventions primarily target acetylcholine deficiency and amyloid plaque formation, but offer limited efficacy and are often associated with adverse effects. Given the multifactorial nature of AD, there is a critical need for novel therapeutic approaches that simultaneously target multiple pathological pathways. Targeting key enzymes involved in AD pathophysiology, such as acetylcholinesterase, butyrylcholinesterase, beta-site APP cleaving enzyme 1 (BACE1), and gamma-secretase, is a potential strategy to mitigate disease progression. To this end, our research group has conducted comprehensive in silico screening to identify some lead compounds, including IQ6 (SSZ), capable of simultaneously inhibiting the enzymes mentioned above. Building upon this foundation, we synthesized SSZ, a novel multitargeted ligand/inhibitor to address various pathological mechanisms underlying AD. Chemically, SSZ exhibits pharmacological properties conducive to AD treatment, featuring pyrrolopyridine and N-cyclohexyl groups. Preclinical experimental evaluation of SSZ in AD rat model showed promising results, with notable improvements in behavioral and cognitive parameters. Specifically, SSZ treatment enhanced locomotor activity, ameliorated gait abnormalities, and improved cognitive function compared to untreated AD rats. Furthermore, brain morphological analysis demonstrated the neuroprotective effects of SSZ, attenuating Aß-induced neuronal damage and preserving brain morphology. Combined treatment of SSZ and conventional drugs (DON and MEM) showed synergistic effects, suggesting a potential therapeutic strategy for AD management. Overall, our study highlights the efficacy of multitargeted ligands like SSZ in combating AD by addressing the complex etiology of the disease. Further research is needed to elucidate the full therapeutic potential of SSZ and the exploration of similar compounds in clinical settings, offering hope for an effective AD treatment in the future.

4.
Comput Biol Med ; 179: 108848, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38968766

RESUMO

Improvements in the homeostasis model assessment of insulin resistance (HOMA-IR) and homeostasis model assessment of beta-cell function (HOMA-ß) significantly reduce the risk of disabling diabetic pathies. Nanoparticle (AuNP-AgNP)-metformin are concentration dependent cross-interacting drugs as they may have a synergistic as well as antagonistic effect(s) on HOMA indicators when administered concurrently. We have employed a blend of machine learning: Artificial Neural Network (ANN), and evolutionary optimization: multiobjective Genetic Algorithms (GA) to discover the optimum regime of the nanoparticle-metformin combination. We demonstrated how to successfully employ a tested and validated ANN to classify the exposed drug regimen into categories of interest based on gradient information. This study also prescribed standard categories of interest for the exposure of multiple diabetic drug regimen. The application of categorization greatly reduces the time and effort involved in reaching the optimum combination of multiple drug regimen based on the category of interest. Exposure of optimum AuNP, AgNP and Metformin to Diabetic rats significantly improved HOMA ß functionality (∼63 %), Insulin resistance (HOMA IR) of Diabetic animals was also reduced significantly (∼54 %). The methods explained in the study are versatile and are not limited to only diabetic drugs.

5.
Eur J Pharmacol ; 978: 176795, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950836

RESUMO

With a global towering prevalence of index acute myocardial infarction (nonrecurrent MI, NR-MI), a high incidence of recurrent MI (R-MI) has emerged in recent decades. Despite the extensive occurrence, the promising predictors of R-MI have been elusive within the cohort of survivors. This study investigates and validates the involvement of distinct gene expressions in R-MI and NR-MI. Bioinformatics tools were used to identify DEGs from the GEO dataset, functional annotation, pathway enrichment analysis, and the PPI network analysis to find hub genes. The validation of proposed genes was conceded by qRT-PCR and Western Blot analysis in experimentally induced NR-MI and R-MI models on a temporal basis. The temporal findings based on RT-PCR consequences reveal a significant and constant upregulation of the UBE2N in the NR-MI model out of the proposed three DEGs (UBE2N, UBB, and TMEM189), while no expression was reported in the R-MI model. Additionally, the proteomics study proposed five DEGs (IL2RB, NKG7, GZMH, CXCR6, and GZMK) for the R-MI model since IL2RB was spotted for significant and persistent downregulation with different time points. Further, Western Blot analysis validated these target genes' expressions temporally. I/R-induced NR-MI and R-MI models were confirmed by the biochemical parameters (CKMB, LDH, cTnI, serum nitrite/nitrate concentration, and inflammatory cytokines) and histological assessments of myocardial tissue. These results underscore the importance of understanding genetic mechanisms underlying MI and highlight the potential of UBE2N and IL2RB as biomarkers for non-recurrent and recurrent MI, respectively.

6.
Int J Biol Macromol ; : 133773, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992554

RESUMO

This study provided evidence that the inclusion of hydrolysable tannin (HT) in high soybean meal (SBM) diets improved growth performance and glycolipid metabolism of largemouth bass (Micropterus salmoides). In vivo, various levels of HT were added to high SBM diets and fed to largemouth bass (initial weight: 6.00 ±â€¯0.03 g) for 56 days. Results showed that a high level of SBM led to the reduction in growth performance, as evidenced by decreased weight gain rate and impaired hepatic function. Dietary supplementation with HT (1.0 g/kg) improved growth performance of largemouth bass, accompanied by the enhancements in hepatic antioxidant capacity and glycolipid metabolism. In vitro, HT facilitated glucose utilization in hepatocytes and positively influenced the modulation of crucial genes within the PI3K/Akt signaling pathway. Conversely, administration of LY294002 (a PI3K inhibitor) reversed the detrimental effects observed in hepatocytes exposed to high glucose levels. Overall, incorporating HT (1.0 g/kg) into the diet enhanced liver health and improved the absorption and utilization of SBM in largemouth bass, potentially achieved through modulation of the PI3K/Akt signaling pathway.

7.
Int J Biol Macromol ; 275(Pt 1): 133634, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964690

RESUMO

Traditional medicines have reportedly treated SARS-CoV-2 infection. Substantial evidence shows that fish oil supplements promote human immune function, suggesting they may lessen susceptibility to SARS-CoV-2 infection and suppress viral replication by inducing interferon. Fish oil was subjected to partition chromatography and separated into two compounds (EP01 and DH01). Isolated compounds were purified and characterized using UV, FTIR, NMR, and mass spectrometry to confirm their identity. Molecular docking was studied on the SARS CoV-2 variants of concern; SARS CoV-2 WT (PDB: 6VXX), SARS CoV-2 Alpha variant (PDB: 7LWS), SARS CoV-2 Delta variant (PDB: 7TOU), SARS CoV-2 Gamma variant (PDB: 7V78), SARS CoV-2 Kappa variant (PDB: 7VX9), and SARS CoV-2 Omicron variant (PDB: 7QO7) and TMPRSS2 (PDB: 7Y0E). Further selected protein-ligand complexes were subjected to 100 ns MD simulations to predict their biological potential in the SARS-CoV-2 treatment. In-vitro biological studies were carried out to support in-silico findings. Isolated compounds EP01 and DH01 were identified as 5-Tridecyltetrahydro-2H-pyran-2-one and 5-Heptadecyltetrahydro-2H-pyran-2-one, respectively. The compound EP01 significantly reduced (93.24 %) the viral RNA copy number with an IC50 of ~8.661 µM. EP01 proved to be a potent antiviral by in-vitro method against the SARS-CoV-2 clinical isolate, making it a promising antiviral candidate, with a single dose capable of preventing viral replication.

8.
J Fluoresc ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913089

RESUMO

Free radicals, products of oxidative processes, induce cellular damage linked to diseases like Parkinson's and diabetes due to increased reactive oxygen species (ROS) levels. Catalase, crucial for scavenging ROS, emerges as a therapeutic agent against ailments including atherosclerosis and tumor progression. Its primary function involves breaking down hydrogen peroxide into water and oxygen. Research on catalase-drug interactions reveals structural changes under specific conditions, affecting its activity and cellular antioxidant balance, highlighting its pivotal role in defending against oxidative stress-related diseases. Hence, targeting catalase is considered an effective strategy for controlling ROS-induced cellular damage. This study investigates the interaction between bovine liver catalase and glipizide using spectroscopic and computational methods. It also explores glipizide's effect on catalase activity. More than 20% inhibition of catalase enzymatic activity was recorded in the presence of 50 µM glipizide. To investigate the inhibition of catalase activity by glipizide, we performed a series of binding studies. Glipizide was found to form a complex with catalase with moderate affinity and binding constant in the range of 3.822 to 5.063 × 104 M-1. The binding was spontaneous and entropically favourable. The α-helical content of catalase increased from 24.04 to 29.53% upon glipizide complexation. Glipizide binding does not alter the local environment surrounding the tyrosine residues while a notable decrease in polarity around the tryptophan residues of catalase was recorded. Glipizide interacted with numerous active site residues of catalase including His361, Tyr357, Ala332, Asn147, Arg71, and Thr360. Molecular simulations revealed that the catalase-glipizide complex remained relatively stable in an aqueous environment. The binding of glipizide had a negligible effect on the secondary structure of catalase, and hydrogen bonds persisted consistently throughout the trajectory. These results could aid in the development of glipizide as a potent catalase inhibitor, potentially reducing the impact of reactive oxygen species (ROS) in the human body.

9.
Microsc Res Tech ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856214

RESUMO

Field emission finds a vital space in numerous scientific and technological applications, including high-resolution imaging at micro- and nano-scales, conducting high-energy physics experiments, molecule ionization in spectroscopy, and electronic uses. A continuous effort exists to develop new materials for enhanced field emission applications. In the present work, two-dimensional (2D) well-aligned CdSSe flake flowers (CdSSe-FFs) were successfully grown on gold-coated silicon substrate utilizing a simple and affordable chemical bath deposition approach at ambient temperature. The time-dependent growth mechanism from nanoparticles to FFs was observed at optimized parameters such as concentration of precursors, pH (~11), deposition time, and solution temperature. The crystalline nature of CdSSe-FFs is confirmed by high-resolution transmission electron microscopy (HRTEM) results, and selected area electron diffraction (SAED) observations reveal a hexagonal crystal structure. Additionally, the CdSSe-FFs thickness was confirmed by TEM analysis and found to be ~20-30 nm. The optical, photoelectric, and field emission (FE) characteristics are thoroughly explored which shows significant enhancement due to the formation of heterojunction between the gold-coated silicon substrate and CdSSe-FFs. The UV-visible absorption spectra of CdSSe-FFs show enhanced absorption at 700 nm, corresponding to the energy band gap (Eg) of 1.77 eV. The CdSSe-FFs exhibited field emission and photosensitive field emission (PSFE) characteristics. In FE study CdSSe-FFs shows an increase in current density of 387.2 µ A cm-2 in an applied field of 4.1 V m-1 which is 4.08 fold as compared to without light illumination (95.1 µ A cm-2). Furthermore, it shows excellent emission current stability at the preset value of 1.5 µA over 3 h with a deviation of the current density of less than 5% respectively. RESEARCH HIGHLIGHTS: Novel CdSSe flake flowers were grown on Au-coated Si substrate by a cost-effective chemical bath deposition route. The growth mechanism of CdSSe flake flowers is studied in detail. Field emission and Photoluminescence study of CdSSe flake flowers is characterized. CdSSe flake flowers with nanoflakes sharp edges exhibited enhanced field emission properties.

10.
Chem Biol Interact ; 398: 111114, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38897341

RESUMO

Withaferin A, a steroid lactone from Withania somnifera, exhibits anti-inflammatory, immunomodulatory, and antioxidant properties. This study investigated the effects of withaferin A on collagen-induced arthritis (CIA) rats, focusing on NF-κB p65 regulation and cytokine release. Withaferin A (50 mg/kg b.wt., orally) or methotrexate (0.25 mg/kg b.wt., i.p., as a reference drug) was given to CIA rats daily for 20 days postarthritis induction. Joints were removed from nonarthritic and arthritic rats to assess the levels of NO, MPO, interleukin (IL)-1ß, IL-6, IL-10, TNF-α, COX-2, and NF-κB via ELISA. Furthermore, the mRNA expression of IL-1ß, IL-10, TNF-α, COX-2, iNOS, and NF-κB was also assessed through qPCR. Treatment with withaferin A significantly inhibited the levels of inflammatory cytokines and the transcription factor NF-κB; suppressed the expression of IL-1ß, IL-10, TNF-α, COX-2, iNOS, and NF-κB in the joint tissue of CIA rats; and reduced cartilage and bone destruction, as shown by H&E staining. To confirm the results obtained from biochemical and molecular studies and to determine the molecular target of withaferin A, we performed a molecular simulation of the potential targets of withaferin A, which identified the NF-κB pathway as its target. These results suggested that withaferin A effectively attenuated rheumatoid arthritis progression by inhibiting the activation of the NF-κB pathway and the downstream secretion of inflammatory cytokines.


Assuntos
Artrite Experimental , Citocinas , NF-kappa B , Transdução de Sinais , Vitanolídeos , Animais , Vitanolídeos/farmacologia , Vitanolídeos/uso terapêutico , Ratos , Citocinas/metabolismo , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Artrite Experimental/patologia , NF-kappa B/metabolismo , Masculino , Transdução de Sinais/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/genética , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Ratos Wistar , Modelos Animais de Doenças , Withania/química
11.
J Ayurveda Integr Med ; 15(3): 100979, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38871595

RESUMO

BACKGROUND: The emergence and evolution of SARS-CoV-2 resulted a severe threat to public health globally. Due to the lack of an effective vaccine with durable immunity, the disease transited into the endemic phase, necessitating potent antiviral therapy including a scientific basis for current traditional herbal medicine. OBJECTIVE: This study aimed to conduct a pharmacoinformatic analysis of selected chemical ingredients and in-vitro evaluation of Cordyceps militaris extract against SARS-CoV-2. MATERIALS AND METHODS: C. militaris, the widely used fungus in conventional herbal medicine, was subjected to computational investigation using molecular docking, molecular dynamic simulation and network pharmacology analysis followed by the in-vitro assay for evaluating its anti-SARS-CoV-2 potential. RESULTS: The molecular docking analysis of C. militaris revealed the Cordycepin's highest affinity (-9.71 kcal/mol) than other molecules, i.e., Cicadapeptin-I, Cicadapeptin-II, Cordycerebroside-B, and N-Acetyl galactosamine to the receptor binding domain of the SARS-CoV-2 spike protein. C. militaris aqueous extract could reduce the SARS-CoV-2 viral copy numbers by 50.24% using crude extract at 100 µg/mL concentration. CONCLUSION: These findings suggest that C. militaris has promising anti-SARS-CoV-2 activity and may be explored as traditional medicine for managing the COVID-19 surge in the endemic phase.

12.
Mol Neurobiol ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890237

RESUMO

Multiple sclerosis (MS) is a neurodegenerative disease characterized by the demyelination of nerves, axonal damage, and neuroinflammation. Cognition impairment, pain, and loss of mobility are some of the usual complications of MS. It has been postulated that the overproduction of proinflammatory cytokines and reactive oxygen species (ROS) are the main factors that contribute to MS pathology. Among various animal models, the cuprizone model is the most widely used model for investigating MS-related pathology. We assessed the effects of cuprizone along with the protective effects of some black seed oil-based nanoformulations of curcumin with and without piperine, in mice hippocampus in terms of the changes in antioxidant enzymes, transcription factors, and cytokines during demyelination and remyelination processes. The results of behavioral studies point toward impairment in working memory following the feeding of cuprizone for 5 weeks. However, in treatment groups, mice seemed to prevent the toxic effects of cuprizone. Nanoformulations used in this study were found to be highly effective in lowering the amount of ROS as indicated by the levels of antioxidant enzymes like catalase, superoxide dismutase, glutathione, and glutathione peroxidase. Moreover, nanoformulations CCF and CCPF were observed resisting the toxic effects of cuprizone. We observed greater expression of NFκB-p65 in the CPZ group than in the control group. CCF nanoformulation had a better inhibitory effect on NFκB-p65 than other formulations. Histological examination of the hippocampus was also conducted. Nanoformulations used here were found effective in reversing MS-related pathophysiology and hence have the potential to be applied as adjuvant therapy for MS treatment.

13.
Bioinformatics ; 40(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38867698

RESUMO

MOTIVATION: Molecular dynamics (MD) is a computational experiment that is crucial for understanding the structure of biological macro and micro molecules, their folding, and the inter-molecular interactions. Accurate knowledge of these structural features is the cornerstone in drug development and elucidating macromolecules functions. The open-source GROMACS biomolecular MD simulation program is recognized as a reliable and frequently used simulation program for its precision. However, the user requires expertise, and scripting skills to carrying out MD simulations. RESULTS: We have developed an end-to-end interactive MD simulation application, MolDy for Gromacs. This front-end application provides a customizable user interface integrated with the Python and Perl-based logical backend connecting the Linux shell and Gromacs software. The tool performs analysis and provides the user with simulation trajectories and graphical representations of relevant biophysical parameters. The advantages of MolDy are (i) user-friendly, does not requiring the researcher to have prior knowledge of Linux; (ii) easy installation by a single command; (iii) freely available for academic research; (iv) can run with minimum configuration of operating systems; (v) has valid default prefilled parameters for beginners, and at the same time provides scope for modifications for expert users. AVAILABILITY AND IMPLEMENTATION: MolDy is available freely as compressed source code files with user manual for installation and operation on GitHub: https://github.com/AIBResearchMolDy/Moldyv01.git and on https://aibresearch.com/innovations.


Assuntos
Simulação de Dinâmica Molecular , Software , Interface Usuário-Computador
15.
J Oral Biol Craniofac Res ; 14(4): 430-434, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38832289

RESUMO

Background and objective: Visfatin, a pleotropic mediator mostly produced by visceral fat, is crucial in controlling the immunological and defensive systems. It serves the roles of a cytokine, an enzyme involved in energy metabolism, and a growth factor. The objective of the present study was to assess the impact of non-surgical periodontal therapy (scaling and root planing) on visfatin concentrations in saliva and gingival crevicular fluid in individuals with Periodontitis (stage-II grade-A). Materials and methods: 54 individuals were divided into Group A (Periodontally Healthy) and Group B1(Periodontitis baseline) based on periodontal parameters including plaque index (PI), gingival index (GI), probing pocket depth (PPD), clinical attachment level (CAL), and radiographic parameters. After NSPT (SRP), Group B1 patients were recalled after 4 weeks, constituting Group B2 (post NSPT group B1). At baseline and 4 weeks after non-surgical periodontal therapy (SRP), all clinical parameters, salivary and GCF samples were recorded. An ELISA kit was used to measure the levels of visfatin. Using the paired t-test, unpaired t-test, and Pearson's correlation coefficient, data were analysed using SPSS 15. Results: After non-surgical periodontal treatment (SRP), the mean salivary and gingival crevicular fluid concentration of visfatin considerably decreased to a level comparable to periodontal health. In all groups, GCF visfatin concentration was higher than salivary concentration of visfatin. In periodontitis patients, visfatin concentration in GCF was 1.5 times higher than in saliva. Conclusion: The results of this investigation suggest a direct correlation between salivary and gingival crevicular fluid visfatin concentration and periodontal tissue inflammation and disease activity.

16.
J Alzheimers Dis ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38875044

RESUMO

Background: HMGCS2 (mitochondrial 3-hydroxy-3-methylglutaryl-COA synthase 2) plays a pivotal role as a control enzyme in ketogenesis, and its association with the amyloid-ß protein precursor (AßPP) in mitochondria implicates a potential involvement in Alzheimer's disease (AD) pathophysiology. Objective: Our study aimed at identifying repurposed drugs using the DrugBank database capable of inhibiting HMGCS2 activity. Methods: Exploiting the power of drug repurposing in conjunction with virtual screening and molecular dynamic (MD) simulations against 'HMGCS2', we present new in-silico insight into structure-based drug repurposing. Results: The initial molecules were screened for their binding affinity to HMGCS2. Subsequent interaction analyses and extensive 300 ns MD simulations were conducted to explore the conformational dynamics and stability of HMGCS2 in complex with the screened molecules, particularly Penfluridol and Lurasidone. Conclusions: The study revealed that HMGCS2 forms stable protein-ligand complexes with Penfluridol and Lurasidone. Our findings indicate that Penfluridol and Lurasidone competitively bind to HMGCS2 and warrant their further exploration as potential repurposed molecules for anti-Alzheimer's drug development.

17.
Front Cell Infect Microbiol ; 14: 1375872, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846355

RESUMO

Introduction: Pseudomonas aeruginosa is notorious for its multidrug resistance and its involvement in hospital-acquired infections. In this study, 20 bacterial strains isolated from soil samples near the Hindan River in Ghaziabad, India, were investigated for their biochemical and morphological characteristics, with a focus on identifying strains with exceptional drug resistance and pyocyanin production. Methods: The isolated bacterial strains were subjected to biochemical and morphological analyses to characterize their properties, with a particular emphasis on exopolysaccharide production. Strain GZB16/CEES1, exhibiting remarkable drug resistance and pyocyanin production. Biochemical and molecular analyses, including sequencing of its 16S rRNA gene (accession number LN735036.1), plasmid-curing assays, and estimation of plasmid size, were conducted to elucidate its drug resistance mechanisms and further pyocynin based target the Candida albicans Strain GZB16/CEES1 demonstrated 100% resistance to various antibiotics used in the investigation, with plasmid-curing assays, suggesting plasmid-based resistance gene transmission. The plasmid in GZB16/CEES1 was estimated to be approximately 24 kb in size. The study focused on P. aeruginosa's pyocyanin production, revealing its association with anticandidal activity. The minimum inhibitory concentration (MIC) of the bacterial extract against Candida albicans was 50 µg/ml, with a slightly lower pyocyanin-based MIC of 38.5 µg/ml. Scanning electron microscopy illustrated direct interactions between P. aeruginosa strains and Candida albicans cells, leading to the destruction of the latter. Discussion: These findings underscore the potential of P. aeruginosa in understanding microbial interactions and developing strategies to combat fungal infections. The study highlights the importance of investigating bacterial-fungal interactions and the role of pyocyanin in antimicrobial activity. Further research in this area could lead to the development of novel therapeutic approaches for combating multidrug-resistant infections.


Assuntos
Antifúngicos , Candida albicans , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Plasmídeos , Pseudomonas aeruginosa , Piocianina , RNA Ribossômico 16S , Microbiologia do Solo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Piocianina/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Índia , Plasmídeos/genética , Antibacterianos/farmacologia , Antibiose
18.
In Silico Pharmacol ; 12(1): 40, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721056

RESUMO

The drug target protein ß-secretase 1 (BACE1) is one of the promising targets in the design of the drugs to control Alzheimer's disease (AD). Patients with neurodegenerative diseases are increasing in number globally due to the increase in the average lifetime. Neuro modulation is the only remedy for overcoming these age related diseases. In recent times, marine bioactive compounds are reported from Phaeophyceae (Brown Algae), Rhodophyta (Red Algae) and Chlorophyta (Green Algae) for neuro-modulation. Hence, an important attempt is made to understand the binding and stability of the identified bioactive compounds from the above marine algae using BACE1 as the molecular target. The docking study shows that the bioactive compound Fucotriphlorethol A ( - 17.27 kcal/mol) has good binding affinity and energy compared to other compounds such as Dieckol ( - 16.77 kcal/mol), Tetraphlorethol C ( - 15.12 kcal/mol), 2-phloroeckol ( - 14.98 kcal/mol), Phlorofucofuroeckol ( - 13.46 kcal/mol) and the co-crystal ( - 8.59 kcal/mol). Further, molecular dynamics simulations studies had been carried out for ß-secretase 1 complex with Fucotriphlorethol A and Phlorofucofuroeckol for 100 ns each. Results are compared with that of the co-crystal inhibitor. Molecular dynamics simulations studies also support the stability and flexibility of the two bioactive compounds Fucotriphlorethol A and Phlorofucofuroeckol with BACE1. Supplementary Information: The online version contains supplementary material available at 10.1007/s40203-024-00210-7.

19.
Fitoterapia ; 176: 106014, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38740346

RESUMO

Nymphaea rubra (N. rubra) flowers are prevalent in subtropical regions for both dietary and traditional medicinal purposes, attributing to their beneficial properties in supporting overall health. This study first time provides descriptions of the antidiabetic and dyslipidemic properties employing STZ induced high fat diet fed diabetic rats and inhibition of α-amylase enzyme activity first by in vitro analyses, followed by a confirmatory in silico study to create a stronger biochemical rationale. Furthermore, in 3 T3-L1 cells, this extract promoted the suppression of adipogenesis. GC-MS investigation of the ethyl acetate fraction of ethanolic extract of N. rubra flowers revealed the presence of marker compounds of N. rubra, Nuciferine, and Apomorphine, which were the focus of molecular docking studies. The acquired concentrations of Nuciferine (22.39%) and 10, 11-dimethoxy-Apomorphine (1.47%) were detected. Together with other alkaloids identified by GC-MS analysis from this extract, mechanistically suggested that it might be caused by the synergistic impact of these bioactive chemicals. Molecular docking has been done to check the binding affinities of various isolated phytochemicals with HPAA, the dose-response effect of 100 mg/kg and 250 mg/kg of flower extract after 30 days showed a significant effect on body weight, food, water intake, serum insulin, FBG, OGTT, lipid profile, glycated haemoglobin, liver and kidney function test. Kidney histopathology results show a significant effect. These findings offer a strong foundation for the potential application of the ethyl acetate fraction of ethanolic extract from Nymphaea rubra flowers and its bioactive constituent in an in vivo system for the treatment and control of diabetes and its associated condition dyslipidemia.


Assuntos
Diabetes Mellitus Experimental , Flores , Hipoglicemiantes , Simulação de Acoplamento Molecular , Nymphaea , Compostos Fitoquímicos , Extratos Vegetais , Ratos Wistar , Animais , Flores/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Diabetes Mellitus Experimental/tratamento farmacológico , Ratos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Camundongos , Masculino , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Nymphaea/química , Células 3T3-L1 , Adipogenia/efeitos dos fármacos , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo , Estrutura Molecular , Dieta Hiperlipídica
20.
Proc Natl Acad Sci U S A ; 121(23): e2315363121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38805281

RESUMO

Regulatory T cells (Tregs) are central in controlling immune responses, and dysregulation of their function can lead to autoimmune disorders or cancer. Despite extensive studies on Tregs, the basis of epigenetic regulation of human Treg development and function is incompletely understood. Long intergenic noncoding RNAs (lincRNA)s are important for shaping and maintaining the epigenetic landscape in different cell types. In this study, we identified a gene on the chromosome 6p25.3 locus, encoding a lincRNA, that was up-regulated during early differentiation of human Tregs. The lincRNA regulated the expression of interleukin-2 receptor alpha (IL2RA), and we named it the lincRNA regulator of IL2RA (LIRIL2R). Through transcriptomics, epigenomics, and proteomics analysis of LIRIL2R-deficient Tregs, coupled with global profiling of LIRIL2R binding sites using chromatin isolation by RNA purification, followed by sequencing, we identified IL2RA as a target of LIRIL2R. This nuclear lincRNA binds upstream of the IL2RA locus and regulates its epigenetic landscape and transcription. CRISPR-mediated deletion of the LIRIL2R-bound region at the IL2RA locus resulted in reduced IL2RA expression. Notably, LIRIL2R deficiency led to reduced expression of Treg-signature genes (e.g., FOXP3, CTLA4, and PDCD1), upregulation of genes associated with effector T cells (e.g., SATB1 and GATA3), and loss of Treg-mediated suppression.


Assuntos
Fatores de Transcrição Forkhead , Subunidade alfa de Receptor de Interleucina-2 , RNA Longo não Codificante , Linfócitos T Reguladores , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Subunidade alfa de Receptor de Interleucina-2/genética , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Epigênese Genética , Regulação da Expressão Gênica , Diferenciação Celular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA