Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Redox Biol ; 65: 102833, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37536085

RESUMO

Ferroptosis, a genetically and biochemically distinct form of programmed cell death, is characterised by an iron-dependent accumulation of lipid peroxides. Therapy-resistant tumor cells display vulnerability toward ferroptosis. Endoplasmic Reticulum (ER) stress and Unfolded Protein Response (UPR) play a critical role in cancer cells to become therapy resistant. Tweaking the balance of UPR to make cancer cells susceptible to ferroptotic cell death could be an attractive therapeutic strategy. To decipher the emerging contribution of ER stress in the ferroptotic process, we observe that ferroptosis inducer RSL3 promotes UPR (PERK, ATF6, and IRE1α), along with overexpression of cystine-glutamate transporter SLC7A11 (System Xc-). Exploring the role of a particular UPR arm in modulating SLC7A11 expression and subsequent ferroptosis, we notice that PERK is selectively critical in inducing ferroptosis in colorectal carcinoma. PERK inhibition reduces ATF4 expression and recruitment to the promoter of SLC7A11 and results in its downregulation. Loss of PERK function not only primes cancer cells for increased lipid peroxidation but also limits in vivo colorectal tumor growth, demonstrating active signs of ferroptotic cell death in situ. Further, by performing TCGA data mining and using colorectal cancer patient samples, we demonstrate that the expression of PERK and SLC7A11 is positively correlated. Overall, our experimental data indicate that PERK is a negative regulator of ferroptosis and loss of PERK function sensitizes colorectal cancer cells to ferroptosis. Therefore, small molecule PERK inhibitors hold huge promise as novel therapeutics and their potential can be harnessed against the apoptosis-resistant condition.


Assuntos
Neoplasias Colorretais , Ferroptose , Humanos , Sistema y+ de Transporte de Aminoácidos/genética , Neoplasias Colorretais/genética , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Endorribonucleases/metabolismo , Ferroptose/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
2.
Nat Commun ; 13(1): 7344, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36446780

RESUMO

Triple-Negative Breast Cancer (TNBC) has a poor prognosis and adverse clinical outcomes among all breast cancer subtypes as there is no available targeted therapy. Overexpression of Enhancer of zeste homolog 2 (EZH2) has been shown to correlate with TNBC's poor prognosis, but the contribution of EZH2 catalytic (H3K27me3) versus non-catalytic EZH2 (NC-EZH2) function in TNBC progression remains elusive. We reveal that selective hyper-activation of functional EZH2 (H3K27me3) over NC-EZH2 alters TNBC metastatic landscape and fosters its peritoneal metastasis, particularly splenic. Instead of H3K27me3-mediated repression of gene expression; here, it promotes KRT14 transcription by attenuating binding of repressor SP1 to its promoter. Further, KRT14 loss significantly reduces TNBC migration, invasion, and peritoneal metastasis. Consistently, human TNBC metastasis displays positive correlation between H3K27me3 and KRT14 levels. Finally, EZH2 knockdown or H3K27me3 inhibition by EPZ6438 reduces TNBC peritoneal metastasis. Altogether, our preclinical findings suggest a rationale for targeting TNBC with EZH2 inhibitors.


Assuntos
Neoplasias Peritoneais , Neoplasias de Mama Triplo Negativas , Humanos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Histonas/genética , Queratina-14/genética , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/secundário , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Regulação para Cima
3.
Biochim Biophys Acta Rev Cancer ; 1877(5): 188790, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36058380

RESUMO

The oncogenic chemokine duo CXCR4-CXCL12/SDF-1 (C-X-C Receptor 4-C-X-C Ligand 12/ Stromal-derived factor 1) has been the topic of intense scientific disquisitions since Muller et al., in her ground-breaking research, described this axis as a critical determinant of organ-specific metastasis in breast cancer. Elevated CXCR4 levels correlate with distant metastases, poor prognosis, and unfavourable outcomes in most solid tumors. Therapeutic impediment of the axis in clinics with Food and Drug Administration (FDA) approved inhibitors like AMD3100 or Plerixafor yield dubious results, contrary to pre-clinical developments. Clinical trials entailing inhibition of CXCR7 (C-X-C Receptor 7), another convicted chemokine receptor that exhibits affinity for CXCL12, reveal outcomes analogous to that of CXCR4-CXCL12 axis blockade. Of note, the cellular CXCR4 knockout phenotype varies largely from that of inhibitor treatments. These shaky findings pique great curiosity to delve further into the realm of this infamous chemokine receptor to provide a probable explanation. A multitude of recent reports suggests the presence of an increased intracellular CXCR4 pool in various cancers, both cytoplasmic and nuclear. This intracellular CXCR4 protein reserve seems active as it correlates with vital tumor attributes, viz. prognosis, aggressiveness, metastasis, and disease-free survival. Diminishing this entire intracellular CXCR4 load apart from the surface signals looks encouraging from a therapeutic point of view. Transcending beyond the classically accepted concept of ligand-mediated surface signaling, this review sheds new light on plausible associations of intracellularly compartmentalised CXCR4 with various aspects of tumorigenesis. Besides, this review also puts forward a comprehensive account of CXCR4 regulation in different cancers.


Assuntos
Neoplasias da Mama , Compostos Heterocíclicos , Receptores CXCR4 , Neoplasias da Mama/patologia , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Feminino , Mobilização de Células-Tronco Hematopoéticas , Humanos , Ligantes , Receptores CXCR4/genética , Receptores CXCR4/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA