Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Imaging ; 10(8)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39194972

RESUMO

Agriculture plays a vital role in Bangladesh's economy. It is essential to ensure the proper growth and health of crops for the development of the agricultural sector. In the context of Bangladesh, crop diseases pose a significant threat to agricultural output and, consequently, food security. This necessitates the timely and precise identification of such diseases to ensure the sustainability of food production. This study focuses on building a hybrid deep learning model for the identification of three specific diseases affecting three major crops: late blight in potatoes, brown spot in rice, and common rust in corn. The proposed model leverages EfficientNetB0's feature extraction capabilities, known for achieving rapid high learning rates, coupled with the classification proficiency of SVMs, a well-established machine learning algorithm. This unified approach streamlines data processing and feature extraction, potentially improving model generalizability across diverse crops and diseases. It also aims to address the challenges of computational efficiency and accuracy that are often encountered in precision agriculture applications. The proposed hybrid model achieved 97.29% accuracy. A comparative analysis with other models, CNN, VGG16, ResNet50, Xception, Mobilenet V2, Autoencoders, Inception v3, and EfficientNetB0 each achieving an accuracy of 86.57%, 83.29%, 68.79%, 94.07%, 90.71%, 87.90%, 94.14%, and 96.14% respectively, demonstrated the superior performance of our proposed model.

2.
Phys Rev E ; 109(6-2): 065311, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39020893

RESUMO

The understanding of quantum phase transitions in disordered or quasicrystal media is a central issue in condensed matter physics. In this paper we investigate localization properties of the two-dimensional Aubry-André model. We find that the system exhibits self-duality for the transformation between position and momentum spaces at a critical quasiperiodic potential, leading to an energy-independent Anderson transition. Most importantly, we present the implementation of an efficient and accurate algorithm based on the Chebyshev polynomial expansion of the Loschmidt echo, which characterizes the nonequilibrium dynamics of quantum quenched quasiperiodic systems. We analytically prove that the system under quench dynamics displays dynamical quantum phase transitions and further provide numerical verification by computing the polynomial expansion of the Loschmidt echo. Our results may provide insight into the realization of electronic transport in experiments.

3.
Brain Behav Immun ; 120: 584-603, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38986724

RESUMO

Aged individuals with spinal cord injury (SCI) are prevalent with increased mortality and worse outcomes. SCI can cause secondary brain neuroinflammation and neurodegeneration. However, the mechanisms contributing to SCI-induced brain dysfunction are poorly understood. Cell-to-cell signaling through extracellular vesicles (EVs) has emerged as a critical mediator of neuroinflammation, including at a distance through circulation. We have previously shown that SCI in young adult (YA) male mice leads to robust changes in plasma EV count and microRNAs (miRs) content. Here, our goal was to investigate the impact of old age on EVs and brain after SCI. At 24 h post-injury, there was no difference in particle count or size distribution between YA and aged mice. However, aged animals increased expression of EV marker CD63 with SCI. Using the Fireplex® miRs assay, Proteomics, and mass spectrometry-based Lipidomics, circulating EVs analysis identified distinct profiles of miRs, proteins, and lipid components in old and injury animals. In vitro, plasma EVs from aged SCI mice, at a lower concentration comparable to those of YA SCI mice, induced the secretion of pro-inflammatory cytokines and neuronal apoptosis. Systemic administration of plasma EVs from SCI animals was sufficient to impair general physical function and neurological function in intact animals, which is associated with pro-inflammatory changes in the brain. Furthermore, plasma EVs from young animals had rejuvenating effects on naïve aged mice. Collectively, these studies identify the critical changes in circulating EVs cargoes after SCI and in aged animals and support a potential EV-mediated mechanism for SCI-induced brain changes.


Assuntos
Envelhecimento , Encéfalo , Vesículas Extracelulares , Doenças Neuroinflamatórias , Traumatismos da Medula Espinal , Animais , Vesículas Extracelulares/metabolismo , Masculino , Camundongos , Doenças Neuroinflamatórias/metabolismo , Traumatismos da Medula Espinal/metabolismo , Encéfalo/metabolismo , Envelhecimento/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Citocinas/metabolismo , Citocinas/sangue , Neurônios/metabolismo , Inflamação/metabolismo
4.
ACS Omega ; 9(23): 25106-25123, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38882164

RESUMO

Lung cancer is a frequently diagnosed respiratory disease caused by particulate matter in the environment, especially among older individuals. For its effective treatment, a promising approach involves administering drug particles through the inhalation route. Multiple studies have investigated the flow behavior of inhaled particles in the respiratory airways of healthy patients. However, the existing literature lacks studies on the precise understanding of the transportation and deposition (TD) of inhaled particles through age-specific, unhealthy respiratory tracts containing a tumor, which can potentially optimize lung cancer treatment. This study aims to investigate the TD of inhaled drug particles within a tumorous, age-specific human respiratory tract. The computational model reports that drug particles within the size range of 5-10 µm are inclined to deposit more on the tumor located in the upper airways of a 70-year-old lung. Conversely, for individuals aged 50 and 60 years, an optimal particle size range for achieving the highest degree of particle deposition onto upper airway tumor falls within the 11-20 µm range. Flow disturbances are found to be at a maximum in the airway downstream of the tumor. Additionally, the impact of varying inhalation flow rates on particle TD is examined. The obtained patterns of airflow distribution and deposition efficiency on the tumor wall for different ages and tumor locations in the upper tracheobronchial airways would be beneficial for developing an efficient and targeted drug delivery system.

5.
J Neuroinflammation ; 21(1): 83, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581043

RESUMO

BACKGROUND: It is well established that traumatic brain injury (TBI) causes acute and chronic alterations in systemic immune function and that systemic immune changes contribute to posttraumatic neuroinflammation and neurodegeneration. However, how TBI affects bone marrow (BM) hematopoietic stem/progenitor cells chronically and to what extent such changes may negatively impact innate immunity and neurological function has not been examined. METHODS: To further understand the role of BM cell derivatives on TBI outcome, we generated BM chimeric mice by transplanting BM from chronically injured or sham (i.e., 90 days post-surgery) congenic donor mice into otherwise healthy, age-matched, irradiated CD45.2 C57BL/6 (WT) hosts. Immune changes were evaluated by flow cytometry, multiplex ELISA, and NanoString technology. Moderate-to-severe TBI was induced by controlled cortical impact injury and neurological function was measured using a battery of behavioral tests. RESULTS: TBI induced chronic alterations in the transcriptome of BM lineage-c-Kit+Sca1+ (LSK+) cells in C57BL/6 mice, including modified epigenetic and senescence pathways. After 8 weeks of reconstitution, peripheral myeloid cells from TBI→WT mice showed significantly higher oxidative stress levels and reduced phagocytic activity. At eight months after reconstitution, TBI→WT chimeric mice were leukopenic, with continued alterations in phagocytosis and oxidative stress responses, as well as persistent neurological deficits. Gene expression analysis revealed BM-driven changes in neuroinflammation and neuropathology after 8 weeks and 8 months of reconstitution, respectively. Chimeric mice subjected to TBI at 8 weeks and 8 months post-reconstitution showed that longer reconstitution periods (i.e., time post-injury) were associated with increased microgliosis and leukocyte infiltration. Pre-treatment with a senolytic agent, ABT-263, significantly improved behavioral performance of aged C57BL/6 mice at baseline, although it did not attenuate neuroinflammation in the acutely injured brain. CONCLUSIONS: TBI causes chronic activation and progressive dysfunction of the BM stem/progenitor cell pool, which drives long-term deficits in hematopoiesis, innate immunity, and neurological function, as well as altered sensitivity to subsequent brain injury.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Camundongos , Animais , Doenças Neuroinflamatórias , Camundongos Endogâmicos C57BL , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas/patologia , Encéfalo/metabolismo
6.
J Neuroinflammation ; 21(1): 113, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685031

RESUMO

Obesity increases the morbidity and mortality of traumatic brain injury (TBI). Detailed analyses of transcriptomic changes in the brain and adipose tissue were performed to elucidate the interactive effects between high-fat diet-induced obesity (DIO) and TBI. Adult male mice were fed a high-fat diet (HFD) for 12 weeks prior to experimental TBI and continuing after injury. High-throughput transcriptomic analysis using Nanostring panels of the total visceral adipose tissue (VAT) and cellular components in the brain, followed by unsupervised clustering, principal component analysis, and IPA pathway analysis were used to determine shifts in gene expression patterns and molecular pathway activity. Cellular populations in the cortex and hippocampus, as well as in VAT, during the chronic phase after combined TBI-HFD showed amplification of central and peripheral microglia/macrophage responses, including superadditive changes in selected gene expression signatures and pathways. Furthermore, combined TBI and HFD caused additive dysfunction in Y-Maze, Novel Object Recognition (NOR), and Morris water maze (MWM) cognitive function tests. These novel data suggest that HFD-induced obesity and TBI can independently prime and support the development of altered states in brain microglia and VAT, including the disease-associated microglia/macrophage (DAM) phenotype observed in neurodegenerative disorders. The interaction between HFD and TBI promotes a shift toward chronic reactive microglia/macrophage transcriptomic signatures and associated pro-inflammatory disease-altered states that may, in part, underlie the exacerbation of cognitive deficits. Thus, targeting of HFD-induced reactive cellular phenotypes, including in peripheral adipose tissue immune cell populations, may serve to reduce microglial maladaptive states after TBI, attenuating post-traumatic neurodegeneration and neurological dysfunction.


Assuntos
Lesões Encefálicas Traumáticas , Encéfalo , Disfunção Cognitiva , Dieta Hiperlipídica , Macrófagos , Camundongos Endogâmicos C57BL , Microglia , Animais , Dieta Hiperlipídica/efeitos adversos , Microglia/metabolismo , Microglia/patologia , Masculino , Camundongos , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Disfunção Cognitiva/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/metabolismo , Encéfalo/patologia , Encéfalo/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Reconhecimento Psicológico/fisiologia , Obesidade/patologia , Obesidade/complicações , Aprendizagem em Labirinto/fisiologia
7.
Diabetes Ther ; 15(3): 691-704, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355814

RESUMO

INTRODUCTION: The effectiveness and safety of long-acting insulin glargine U300 (Gla-300), in patients with type 2 diabetes mellitus (T2DM) requiring insulin, has not been reported in the Gulf region. METHODS: Insulin-naïve patients with T2DM, uncontrolled on OADs, and prescribed Gla-300 were followed up in a 12-month prospective observational study. Gla-300 was titrated to glycemic targets. The primary endpoint (achieving glycemic targets) was evaluated at month 6 of treatment. The need for treatment intensification, safety, and patient-reported outcomes (PRO) were also reported. RESULTS: The study included 412 patients (61.7% men; age 52.2 ± 11.1 years and T2DM duration 10.7 ± 6.8 years). Almost 50% were on more than 3 OADs, mostly biguanides, sulfonylureas, and dipeptidyl-peptidase-4 inhibitors. Baseline HbA1c level was 9.2% ± 1.1% and targets were set at 6.9% ± 0.4%. Baseline fasting plasma glucose was 11.5 ± 3.8 mmol/l. Fifty-seven patients (13.8%) achieved glycemic targets at month 6, hindered by baseline HbA1c ≥ 10%, frequent co-morbidities, older age, suburban/rural residence, and full-time employment. Levels of HbA1c dropped progressively by 0.96% ± 0.07% (month 3), 1.29% ± 0.08% (month 6), and 1.76% ± 0.06% (month 12). Gla-300 dose was 17.0 ± 9.0 IU/day at baseline, 24.6 ± 9.6 IU/day at month 3, 28.5 ± 9.9 IU/day at month 6, and 30.7 ± 10.7 IU/day at month 12. Three patients experienced non-severe hypoglycemia and a slight decrease in body weight and PROs improved. CONCLUSIONS: In the Gulf, Gla-300 in patients with T2DM uncontrolled on OADs improved glycemic control, with low rates of hypoglycemia and improved PROs. Gla-300 dose up-titration from baseline to month 6 did not, however, result in a vast proportion of patients achieving their pre-determined HbA1c targets. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT03703869.

8.
Med Eng Phys ; 124: 104095, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38418024

RESUMO

Rehabilitation is a major requirement to improve the quality of life and mobility of patients with disabilities. The use of rehabilitative devices without continuous supervision of medical experts is increasing manifold, mainly due to prolonged therapy costs and advancements in robotics. Due to ExoMechHand's inexpensive cost, high robustness, and efficacy for participants with median and ulnar neuropathies, we have recommended it as a rehabilitation tool in this study. ExoMechHand is coupled with three different resistive plates for hand impairment. For efficacy, ten unhealthy subjects with median or ulnar nerve neuropathies are considered. After twenty days of continuous exercise, three subjects showed improvement in their hand grip, range of motion of the wrist, or range of motion of metacarpophalangeal joints. The condition of the hand is assessed by features of surface-electromyography signals. A Machine-learning model based on these features of fifteen subjects is used for staging the condition of the hand. Machine-learning algorithms are trained to indicate the type of resistive plate to be used by the subject without the need for examination by the therapist. The extra-trees classifier came out to be the most effective algorithm with 98% accuracy on test data for indicating the type of resistive plate, followed by random-forest and gradient-boosting with accuracies of 95% and 93%, respectively. Results showed that the staging of hand condition could be analyzed by sEMG signal obtained from the flexor-carpi-ulnaris and flexor-carpi-radialis muscles in subjects with median and ulnar neuropathies.


Assuntos
Força da Mão , Neuropatias Ulnares , Humanos , Qualidade de Vida , Punho/fisiologia , Mãos/fisiologia , Eletromiografia
9.
Chem Commun (Camb) ; 60(14): 1811-1825, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38264768

RESUMO

The advancement of highly efficient and enduring platinum (Pt)-based electrocatalysts for the oxygen reduction reaction (ORR) is a critical determinant to enable broad utilization of clean energy conversion technologies. Pt-based intermetallic electrocatalysts offer durability and superior ORR activity over their traditional analogues due to their definite stoichiometry, ordered and extended structures, and favourable enthalpy of formation. With the advent in new synthetic methods, Pt-based intermetallic nanoparticles as a new class of advanced electrocatalysts have been studied extensively in recent years. This review discusses the preparation principles, representative preparation methods of Pt-based intermetallics and their applications in the ORR. Our review is focused on L10 Pt-based intermetallics which have gained tremendous interest recently due to their larger surface strain and enhanced M(3d)-Pt(5d) orbital coupling, particularly in the crystallographic c-axis direction. Additionally, we discuss future research directions to further improve the efficiency of Pt-based intermetallic electrocatalysts with the intention of stimulating increased research ventures in this domain.

10.
Asian J Psychiatr ; 92: 103897, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199203

RESUMO

OBJECTIVE: To determine the community prevalence of psychiatric disorders in adult population and describe the prevalence by age, men-women, urban-rural strata. METHODS: A nationwide household survey was conducted in 2019 where adults aged 18 years and above were selected by a multicentric, stratified, systematic random approach. The Self-Reporting Questionnaire (SRQ) was used for screening purpose and screened positive individuals were interviewed by research psychiatrists and diagnosed according the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) criteria. RESULTS: Overall adult response rate for this survey was 90.4%. In total, of the 7270 adults, 1570 (21.6%) came positive on the SRQ. Overall prevalence of mental disorders found was 18.7% ((95% CI: 17.4%-20.0%). Women reported higher prevalence of psychiatric disorders than men (21.5% vs 15.7%). No significant difference was observed between urban and rural residents (18.9% vs 18.7%). Most common psychiatric disorders found were depressive disorders (6.7%), anxiety disorders (4.7%), somatic symptom and related disorders (2.3%), sleep-wake disorders (1%) and schizophrenia spectrum disorders (1%). CONCLUSIONS: The study revealed that a substatial proportion of adults received diagnoses for psychiatric disorders. Once again, our findings emphasize the need for development of comprehensive mental healthcare services.


Assuntos
Transtornos Mentais , Adulto , Masculino , Humanos , Feminino , Prevalência , Bangladesh/epidemiologia , Transtornos Mentais/epidemiologia , Transtornos Mentais/diagnóstico , Transtornos de Ansiedade/epidemiologia , Inquéritos e Questionários
11.
Angew Chem Int Ed Engl ; 63(3): e202316385, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38010600

RESUMO

The diversification of chirality in covalent organic frameworks (COFs) holds immense promise for expanding their properties and functionality. Herein, we introduce an innovative approach for imparting helical chirality to COFs and fabricating a family of chiral COF nanotubes with mesoscopic helicity from entirely achiral building blocks for the first time. We present an effective 2,3-diaminopyridine-mediated supramolecular templating method, which facilitates the prefabrication of helical imine-linked polymer nanotubes using unprecedented achiral symmetric monomers. Through meticulous optimization of crystallization conditions, these helical polymer nanotubes are adeptly converted into imine-linked COF nanotubes boasting impressive surface areas, while well preserving their helical morphology and chiroptical properties. Furthermore, these helical imine-linked polymers or COFs could be subtly transformed into corresponding more stable and functional helical ß-ketoenamine-linked and hydrazone-linked COF nanotubes with transferred circular dichroism via monomer exchange. Notably, despite the involvement of covalent bonding breakage and reorganization, these exchange processes overcome thermodynamic disadvantages, allowing mesoscopic helical chirality to be perfectly preserved. This research highlights the potential of mesoscopic helicity in conferring COFs with favourable chiral properties, providing novel insights into the development of multifunctional COFs in the field of chiral materials chemistry.

12.
Res Sq ; 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37790560

RESUMO

Traumatic brain injury (TBI) causes acute and chronic alterations in systemic immune function which contribute to posttraumatic neuroinflammation and neurodegeneration. However, how TBI affects bone marrow (BM) hematopoietic stem/progenitor cells chronically and to what extent such changes may negatively impact innate immunity and neurological function has not been examined. To further understand the role of BM cell derivatives on TBI outcome, we generated BM chimeric mice by transplanting BM from chronically injured or sham congenic donor mice into otherwise healthy, age-matched, irradiated hosts. After 8 weeks of reconstitution, peripheral myeloid cells from TBI→WT mice showed significantly higher oxidative stress levels and reduced phagocytic activity. At eight months after reconstitution, TBI→WT chimeric mice were leukopenic, with continued alterations in phagocytosis and oxidative stress responses, as well as persistent neurological deficits. Gene expression analysis revealed BM-driven changes in neuroinflammation and neuropathology after 8 weeks and 8 months of reconstitution, respectively. Chimeric mice subjected to TBI showed that longer reconstitution periods were associated with increased microgliosis and leukocyte infiltration. Thus, TBI causes chronic activation and progressive dysfunction of the BM stem/progenitor cell pool, which drives long-term deficits in innate immunity and neurological function, as well as altered sensitivity to subsequent brain injury.

13.
Langmuir ; 39(39): 13953-13967, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37729118

RESUMO

MXene is an incredibly promising two-dimensional material with immense potential to serve as a high-performing separating or barrier layer to develop advanced membranes. Despite the significant progress made in MXene membranes, two major challenges still exist: (i) effectively stacking MXene nanosheets into defect-free membranes and (ii) the high fouling tendency of MXene-based membranes. To address these issues, we employed sulfonated polydopamine (SPD), which simultaneously serves as a binding agent to promote the compact assembling of Ti3C2Tx MXenes (MX) nanosheets and improves the antifouling properties of the resulting sulfonated polydopamine-functionalized MX (SPDMX) membranes. The SPDMX membrane was tested for challenging surfactant-stabilized oil-in-water separation with an impressive efficiency of 98%. Moreover, an ultrahigh permeability of 1620 LMH/bar was also achieved. The sulfonation of PD helps in improving the antifouling characteristics of SPDMX by developing a strong hydration layer and enhancing the oleophobicity of the membrane. The underwater SPDMX membrane appeared superoleophobic with an oil contact angle of 153°, whereas the ceramic membrane exhibited an oil contact angle of 137°. The SPDMX membranes showed an improved flux recovery (31%) compared to the nonsulfonated counterpart. This work highlights the appropriate functionalization of MXene as a promising approach to developing MXene membranes with high permeation flux and better antifouling characteristics for oily wastewater treatment.

14.
Sci Rep ; 13(1): 14462, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660096

RESUMO

Diabetic retinopathy (DR) is one of the main causes of blindness in people around the world. Early diagnosis and treatment of DR can be accomplished by organizing large regular screening programs. Still, it is difficult to spot diabetic retinopathy timely because the situation might not indicate signs in the primary stages of the disease. Due to a drastic increase in diabetic patients, there is an urgent need for efficient diabetic retinopathy detecting systems. Auto-encoders, sparse coding, and limited Boltzmann machines were used as a few past deep learning (DL) techniques and features for the classification of DR. Convolutional Neural Networks (CNN) have been identified as a promising solution for detecting and classifying DR. We employ the deep learning capabilities of efficient net batch normalization (BNs) pre-trained models to automatically acquire discriminative features from fundus images. However, we successfully achieved F1 scores above 80% on all efficient net BNs in the EYE-PACS dataset (calculated F1 score for DeepDRiD another dataset) and the results are better than previous studies. In this paper, we improved the accuracy and F1 score of the efficient net BNs pre-trained models on the EYE-PACS dataset by applying a Gaussian Smooth filter and data augmentation transforms. Using our proposed technique, we have achieved F1 scores of 84% and 87% for EYE-PACS and DeepDRiD.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Animais , Retinopatia Diabética/diagnóstico por imagem , Abomaso , Cegueira , Fundo de Olho , Redes Neurais de Computação
15.
bioRxiv ; 2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37546932

RESUMO

Obesity increases the morbidity and mortality of traumatic brain injury (TBI). We performed a detailed analysis of transcriptomic changes in the brain and adipose tissue to examine the interactive effects between high-fat diet-induced obesity (DIO) and TBI in relation to central and peripheral inflammatory pathways, as well as neurological function. Adult male mice were fed a high-fat diet (HFD) for 12 weeks prior to experimental TBI and continuing after injury. Combined TBI and HFD resulted in additive dysfunction in the Y-Maze, novel object recognition (NOR), and Morris water maze (MWM) cognitive function tests. We also performed high-throughput transcriptomic analysis using Nanostring panels of cellular compartments in the brain and total visceral adipose tissue (VAT), followed by unsupervised clustering, principal component analysis, and IPA pathway analysis to determine shifts in gene expression programs and molecular pathway activity. Analysis of cellular populations in the cortex and hippocampus as well as in visceral adipose tissue during the chronic phase after combined TBI-HFD showed amplification of central and peripheral microglia/macrophage responses, including superadditive changes in select gene expression signatures and pathways. These data suggest that HFD-induced obesity and TBI can independently prime and support the development of altered states in brain microglia and visceral adipose tissue macrophages, including the disease-associated microglia/macrophage (DAM) phenotype observed in neurodegenerative disorders. The interaction between HFD and TBI promotes a shift toward chronic reactive microglia/macrophage transcriptomic signatures and associated pro-inflammatory disease-altered states that may, in part, underlie the exacerbation of cognitive deficits. Targeting of HFD-induced reactive cellular phenotypes, including in peripheral adipose tissue macrophages, may serve to reduce microglial maladaptive states after TBI, attenuating post-traumatic neurodegeneration and neurological dysfunction.

16.
J Neuroinflammation ; 20(1): 197, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37653491

RESUMO

BACKGROUND: Medical advances have made it increasingly possible for spinal cord injury (SCI) survivors to survive decades after the insult. But how SCI affects aging changes and aging impacts the injury process have received limited attention. Extracellular vesicles (EVs) are recognized as critical mediators of neuroinflammation after CNS injury, including at a distance from the lesion site. We have previously shown that SCI in young male mice leads to robust changes in plasma EV count and microRNA (miR) content. Here, our goal was to investigate the impact of biological sex and aging on EVs and brain after SCI. METHODS: Young adult age-matched male and female C57BL/6 mice were subjected to SCI. At 19 months post-injury, total plasma EVs were isolated by ultracentrifugation and characterized by nanoparticle tracking analysis (NTA). EVs miR cargo was examined using the Fireplex® assay. The transcriptional changes in the brain were assessed by a NanoString nCounter Neuropathology panel and validated by Western blot (WB) and flow cytometry (FC). A battery of behavioral tests was performed for assessment of neurological function. RESULTS: Transcriptomic changes showed a high number of changes between sham and those with SCI. Sex-specific changes were found in transcription networks related to disease association, activated microglia, and vesicle trafficking. FC showed higher microglia and myeloid counts in the injured tissue of SCI/Female compared to their male counterparts, along with higher microglial production of ROS in both injured site and the brain. In the latter, increased levels of TNF and mitochondrial membrane potential were seen in microglia from SCI/Female. WB and NTA revealed that EV markers are elevated in the plasma of SCI/Male. Particle concentration in the cortex increased after injury, with SCI/Female showing higher counts than SCI/Male. EVs cargo analysis revealed changes in miR content related to injury and sex. Behavioral testing confirmed impairment of cognition and depression at chronic time points after SCI in both sexes, without significant differences between males and females. CONCLUSIONS: Our study is the first to show sexually dimorphic changes in brain after very long-term SCI and supports a potential sex-dependent EV-mediated mechanism that contributes to SCI-induced brain changes.


Assuntos
Doenças Neuroinflamatórias , Traumatismos da Medula Espinal , Feminino , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Encéfalo , Traumatismos da Medula Espinal/complicações , Cognição
17.
Small ; 19(42): e2303131, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37344349

RESUMO

Fabrication of large-area ionic covalent organic framework membranes (iCOMs) remains a grand challenge. Herein, the authors report the liquid water and water vapor-assisted fabrication of large-area superprotonic conductive iCOMs. A mixed monomer solution containing 1,3,5-triformylphloroglucinol (TFP) in 1,4-dioxane and p-diaminobenzenesulfonic acid (DABA) in water is first polymerized to obtain a pristine membrane which subsequently underwent crystallization process in mixed vapors containing water vapor. During the polymerization stage, water played a role of a diluting agent, weakening the Coulombic repulsion between sulfonic acid groups. During the crystallization stage, water vapor played a role of a structure-directing agent to facilitate the formation of highly crystalline, large-area iCOMs. The resulting membranes achieved a proton conductivity value of 0.76 S cm-1 at 90 °C under 100% relative humidity, which is among the highest ever reported. Using liquid water and water vapor as versatile additives open a novel avenue to the fabrication of large-area membranes from covalent organic frameworks and other kinds of crystalline organic framework materials.

18.
Sci Rep ; 13(1): 9470, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37301917

RESUMO

The nonanalyticity of the Loschmidt echo at critical times in quantum quenched systems is termed as the dynamical quantum phase transition, extending the notion of quantum criticality to a nonequilibrium scenario. In this paper, we establish a new paradigm of dynamical phase transitions driven by a sudden change in the internal spatial correlations of the disorder potential in a low-dimensional disordered system. The quench dynamics between prequenched pure and postquenched random system Hamiltonian reveals an anomalous dynamical quantum phase transition triggered by an infinite disorder correlation in the modulation potential. The physical origin of the anomalous phenomenon is associated with the overlap between the two distinctly different extended states. Furthermore, we explore the quench dynamics between the prequenched random and postquenched pure system Hamiltonian. Interestingly, the quenched system undergoes dynamical quantum phase transitions for the prequench white-noise potential in the thermodynamic limit. In addition, the quench dynamics also shows a clear signature of the delocalization phase transition in the correlated Anderson model.


Assuntos
Exame Físico , Transição de Fase , Termodinâmica
19.
Res Sq ; 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37131758

RESUMO

Approximately 20% of all spinal cord injuries (SCI) occur in persons aged 65 years or older. Longitudinal, population-based studies showed that SCI is a risk factor for dementia. However, little research has addressed the potential mechanisms of SCI-mediated neurological impairment in the elderly. We compared young adult and aged C57BL/6 male mice subjected to contusion SCI, using a battery of neurobehavioral tests. Locomotor function showed greater impairment in aged mice, which was correlated with reduced, spared spinal cord white matter and increased lesion volume. At 2 months post-injury, aged mice displayed worse performance in cognitive and depressive-like behavioral tests. Transcriptomic analysis identified activated microglia and dysregulated autophagy as the most significantly altered pathways by both age and injury. Flow cytometry demonstrated increased myeloid and lymphocyte infiltration at both the injury site and brain of aged mice. SCI in aged mice was associated with altered microglial function and dysregulated autophagy involving both microglia and brain neurons. Altered plasma extracellular vesicles (EVs) responses were found in aged mice after acute SCI. EV-microRNA cargos were also significantly altered by aging and injury, which were associated with neuroinflammation and autophagy dysfunction. In cultured microglia, astrocytes, and neurons, plasma EVs from aged SCI mice, at a lower concentration comparable to those of young adult SCI mice, induced the secretion of pro-inflammatory cytokines CXCL2 and IL-6, and increased caspase3 expression. Together, these findings suggest that age alters the EVs pro-inflammatory response to SCI, potentially contributing to worse neuropathological and functional outcomes.

20.
Chem Commun (Camb) ; 59(42): 6314-6334, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37132271

RESUMO

Recently, the increasing concerns regarding environmental and energy-related issues due to the use of fossil fuels have triggered extensive research on sustainable electrochemical energy storage and conversion (EESC). In this case, covalent triazine frameworks (CTFs) possess a large surface area, tailorable conjugated structures, electron donating-accepting/conducting moieties, and excellent chemical and thermal stabilities. These merits make them leading candidates for EESC. However, their poor electrical conductivity impedes electron and ion conduction, leading to unsatisfactory electrochemical performances, which limit their commercial applications. Thus, to overcome these challenges, CTF-based nanocomposites and their derivatives such as heteroatom-doped porous carbons, which inherit most of the merits of pristine CTFs, lead to excellent performances in the field of EESC. In this review, initially, we briefly highlight the existing strategies for the synthesis of CTFs with application-targeted properties. Next, we review the contemporary progress of CTFs and their derivatives related to electrochemical energy storage (supercapacitors, alkali-ion batteries, lithium-sulfur batteries, etc.) and conversion (oxygen reduction/evolution reaction, hydrogen evolution reaction, carbon dioxide reduction reaction, etc.). Finally, we discuss perspectives on current challenges and recommendations for the further development of CTF-based nanomaterials in burgeoning EESC research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA