RESUMO
BACKGROUND: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-infected patients exhibit disease ranging from asymptomatic to severe pneumonia, multi-organ failure, and death. convalescent COVID plasma (CCP) from recovered patients with high levels of neutralizing antibodies has demonstrated therapeutic efficacy to reduce the morbidity of coronavirus disease 2019 (COVID-19) in some studies. The development of assays to characterize the activity of CCP to neutralize SARS-CoV-2 infectivity offers the possibility to improve potential therapeutic efficacy. Lyophilization of CCP may increase the availability of this therapy. We hypothesized that SARS-CoV-2 antibody profiles of pooled lyophilized pathogen-reduced CCP from COVID-19-recovered blood donors retains virus-neutralizing efficacy as reported for frozen pathogen-reduced CCP. METHODS: Pooled lyophilized pathogen-reduced plasma was prepared from recovered COVID plasma donors. Antibodies to SARS-CoV-2 were characterized in each donor plasma prior to pathogen reduction and lyophilization and after lyophilization of individual CCP, and in the lyophilized CCP pool. Several complimentary assays were used to characterize antibody levels, neutralizing capacity, and the spectrum of antigen reactivity. The mean values for individual plasma samples and the value in the pool were compared. RESULTS: The mean ratio for antibody binding to SARS-CoV-2 antigens before and after treatment was 0.95 ± 0.22 mean fluorescent intensity (MFI) units. Antibody activity to an array of influenza virus antigens demonstrated a mean activity ratio of 0.92 ± 0.12 MFI before and after treatment. CONCLUSIONS: The antibody activity in pooled pathogen-reduced lyophilized CCPs demonstrated minimal impact due to pathogen reduction treatment and lyophilization.
Assuntos
COVID-19 , Furocumarinas , Humanos , SARS-CoV-2 , COVID-19/terapia , Anticorpos NeutralizantesRESUMO
Introduction: In the context of recurrent surges of SARS-CoV-2 infections, a detailed characterization of antibody persistence over a 6-month period following vaccine booster dose is necessary to crafting effective public health policies on repeat vaccination. Methods: To characterize the SARS-CoV-2 antibody profile of a healthcare worker population over a 6-month period following mRNA vaccination and booster dose. 323 healthcare workers at an academic medical center in Orange County, California who had completed primary vaccination and booster dose against SARS-CoV-2 were recruited for the study. A total of 690 blood specimens over a 6-month period were collected via finger-stick blood and analyzed for the presence of antibodies against 9 SARS-CoV-2 antigens using a coronavirus antigen microarray. Results: The primary outcome of this study was the average SARS-CoV-2 antibody level as measured using a novel coronavirus antigen microarray. Additional outcomes measured include levels of antibodies specific to SARS-CoV-2 variants including Delta, Omicron BA.1, and BA.2. We also measured SARS-CoV-2 neutralization capacity for a subset of the population to confirm correlation with antibody levels. Although antibodies against SARS-CoV-2 wane throughout the 6-month period following a booster dose, antibody levels remain higher than pre-boost levels. However, a booster dose of vaccine based on the original Wuhan strain generates approximately 3-fold lower antibody reactivity against Omicron variants BA.1 and BA.2 as compared to the vaccine strain. Despite waning antibody levels, neutralization activity against the vaccine strain is maintained throughout the 6-month period. Discussion: In the context of recurrent surges of SARS-CoV-2 infections, our data indicate that breakthrough infections are likely driven by novel variants with different antibody specificity and not by time since last dose of vaccination, indicating that development of vaccinations specific to these novel variants is necessary to prevent future surges of SARS-CoV-2 infections.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , Anticorpos Antivirais , Pessoal de Saúde , Vacinas de mRNARESUMO
BACKGROUND: While others have reported severe acute respiratory syndrome-related coronavirus 2(SARS-CoV-2) seroprevalence studies in health care workers (HCWs), we leverage the use of a highly sensitive coronavirus antigen microarray to identify a group of seropositive health care workers who were missed by daily symptom screening that was instituted prior to any epidemiologically significant local outbreak. Given that most health care facilities rely on daily symptom screening as the primary method to identify SARS-CoV-2 among health care workers, here, we aim to determine how demographic, occupational, and clinical variables influence SARS-CoV-2 seropositivity among health care workers. METHODS: We designed a cross-sectional survey of HCWs for SARS-CoV-2 seropositivity conducted from May 15th to June 30th 2020 at a 418-bed academic hospital in Orange County, California. From an eligible population of 5,349 HCWs, study participants were recruited in two ways: an open cohort, and a targeted cohort. The open cohort was open to anyone, whereas the targeted cohort that recruited HCWs previously screened for COVID-19 or work in high-risk units. A total of 1,557 HCWs completed the survey and provided specimens, including 1,044 in the open cohort and 513 in the targeted cohort. Demographic, occupational, and clinical variables were surveyed electronically. SARS-CoV-2 seropositivity was assessed using a coronavirus antigen microarray (CoVAM), which measures antibodies against eleven viral antigens to identify prior infection with 98% specificity and 93% sensitivity. RESULTS: Among tested HCWs (n = 1,557), SARS-CoV-2 seropositivity was 10.8%, and risk factors included male gender (OR 1.48, 95% CI 1.05-2.06), exposure to COVID-19 outside of work (2.29, 1.14-4.29), working in food or environmental services (4.85, 1.51-14.85), and working in COVID-19 units (ICU: 2.28, 1.29-3.96; ward: 1.59, 1.01-2.48). Amongst 1,103 HCWs not previously screened, seropositivity was 8.0%, and additional risk factors included younger age (1.57, 1.00-2.45) and working in administration (2.69, 1.10-7.10). CONCLUSION: SARS-CoV-2 seropositivity is significantly higher than reported case counts even among HCWs who are meticulously screened. Seropositive HCWs missed by screening were more likely to be younger, work outside direct patient care, or have exposure outside of work.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Masculino , COVID-19/epidemiologia , Estudos Transversais , Pandemias , Estudos Soroepidemiológicos , Pessoal de Saúde , Anticorpos AntiviraisRESUMO
In the context of recurrent surges of SARS-CoV-2 infections, a detailed characterization of antibody persistence over a 6-month period following vaccine booster dose is necessary to crafting effective public health policies on repeat vaccination. To characterize the SARS-CoV-2 antibody profile of a healthcare worker population over a 6-month period following mRNA vaccination and booster dose. 323 healthcare workers at an academic medical center in Orange County, California who had completed primary vaccination and booster dose against SARS-CoV-2 were recruited for the study. A total of 690 blood specimens over a 6-month period were collected via finger-stick blood and analyzed for the presence of antibodies against 9 SARS-CoV-2 antigens using a coronavirus antigen microarray. The primary outcome of this study was the average SARS-CoV-2 antibody level as measured using a novel coronavirus antigen microarray. Additional outcomes measured include levels of antibodies specific to SARS-CoV-2 variants including Delta, Omicron BA.1, and BA.2. We also measured SARS-CoV-2 neutralization capacity for a subset of the population to confirm correlation with antibody levels. Although antibodies against SARS-CoV-2 wane throughout the 6-month period following a booster dose, antibody levels remain higher than pre-boost levels. However, a booster dose of vaccine generates approximately 3-fold lower antibody reactivity against Omicron variants BA.1 and BA.2 as compared to the original Wuhan strain. Despite waning antibody levels, neutralization activity against the original Wuhan strain is maintained throughout the 6-month period. In the context of recurrent surges of SARS-CoV-2 infections despite vaccination with booster doses, our data indicate that breakthrough infections are likely driven by novel variants with different antibody specificity and not by time since last dose of vaccination, indicating that development of vaccinations specific to these novel variants is necessary to prevent future surges of SARS-CoV-2 infections.
RESUMO
BACKGROUND: Efficacy of donated COVID-19 convalescent plasma (dCCP) is uncertain and may depend on antibody titers, neutralizing capacity, timing of administration, and patient characteristics. STUDY DESIGN AND METHODS: In a single-center hypothesis-generating prospective case-control study with 1:2 matched dCCP recipients to controls according to disease severity at day 1, hospitalized adults with COVID-19 pneumonia received 2 × 200 ml pathogen-reduced treated dCCP from 2 different donors. We evaluated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies in COVID-19 convalescent plasma donors and recipients using multiple antibody assays including a Coronavirus antigen microarray (COVAM), and binding and neutralizing antibody assays. Outcomes were dCCP characteristics, antibody responses, 28-day mortality, and dCCP -related adverse events in recipients. RESULTS: Eleven of 13 dCCPs (85%) contained neutralizing antibodies (nAb). PRT did not affect dCCP antibody activity. Fifteen CCP recipients and 30 controls (median age 64 and 65 years, respectively) were enrolled. dCCP recipients received 2 dCCPs from 2 different donors after a median of one hospital day and 11 days after symptom onset. One dCCP recipient (6.7%) and 6 controls (20%) died (p = 0.233). We observed no dCCP-related adverse events. Transfusion of unselected dCCP led to heterogeneous SARS CoV-2 antibody responses. COVAM clustered dCCPs in 4 distinct groups and showed endogenous immune responses to SARS-CoV-2 antigens over 14-21 days post dCCP in all except 4 immunosuppressed recipients. DISCUSSION: PRT did not impact dCCP anti-virus neutralizing activity. Transfusion of unselected dCCP did not impact survival and had no adverse effects. Variable dCCP antibodies and post-transfusion antibody responses indicate the need for controlled trials using well-characterized dCCP with informative assays.
Assuntos
COVID-19 , SARS-CoV-2 , Idoso , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/terapia , Estudos de Casos e Controles , Humanos , Imunização Passiva , Pessoa de Meia-Idade , Soroterapia para COVID-19RESUMO
Recent studies provide conflicting evidence on the persistence of SARS-CoV-2 immunity induced by mRNA vaccines. Here, we aim to quantify the persistence of humoral immunity following vaccination using a coronavirus antigen microarray that includes 10 SARS-CoV-2 antigens. In a prospective longitudinal cohort of 240 healthcare workers, composite SARS-CoV-2 IgG antibody levels did not wane significantly over a 6-month study period. In the subset of the study population previously exposed to SARS-CoV-2 based on seropositivity for nucleocapsid antibodies, higher composite anti-spike IgG levels were measured before the vaccine but no significant difference from unexposed individuals was observed at 6 months. Age, vaccine type, or worker role did not significantly impact composite IgG levels, although non-significant trends towards lower antibody levels in older participants and higher antibody levels with Moderna vaccine were observed at 6 months. A small subset of our cohort were classified as having waning antibody titers at 6 months, and these individuals were less likely to work in patient care roles and more likely to have prior exposure to SARS-CoV-2.
Assuntos
COVID-19 , SARS-CoV-2 , Idoso , Anticorpos Antivirais , COVID-19/prevenção & controle , Pessoal de Saúde , Humanos , Imunoglobulina G , Lactente , Estudos ProspectivosRESUMO
BACKGROUND: COVID-19 convalescent plasma (CCP), from donors recovered from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, is one of the limited therapeutic options currently available for the treatment of critically ill patients with COVID-19. There is growing evidence that CCP may reduce viral loads and disease severity; and reduce mortality. However, concerns about the risk of transfusion-transmitted infections (TTI) and other complications associated with transfusion of plasma, remain. Amotosalen/UVA pathogen reduction treatment (A/UVA-PRT) of plasma offers a mitigation of TTI risk, and when combined with pooling has the potential to increase the diversity of the polyclonal SARS-CoV-2 neutralizing antibodies. STUDY DESIGN AND METHODS: This study assessed the impact of A/UVA-PRT on SARS-CoV-2 antibodies in 42 CCP using multiple complimentary assays including antigen binding, neutralizing, and epitope microarrays. Other mediators of CCP efficacy were also assessed. RESULTS: A/UVA-PRT did not negatively impact antibodies to SARS-CoV-2 and other viral epitopes, had no impact on neutralizing activity or other potential mediators of CCP efficacy. Finally, immune cross-reactivity with other coronavirus antigens was observed raising the potential for neutralizing activity against other emergent coronaviruses. CONCLUSION: The findings of this study support the selection of effective CCP combined with the use of A/UVA-PRT in the production of CCP for patients with COVID-19.
Assuntos
COVID-19 , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/terapia , Furocumarinas , Humanos , Imunização Passiva , SARS-CoV-2 , Soroterapia para COVID-19RESUMO
BACKGROUND: Early evaluations of healthcare professional (HCP) COVID-19 risk occurred during insufficient personal protective equipment and disproportionate testing, contributing to perceptions of high patient-care related HCP risk. We evaluated HCP COVID-19 seropositivity after accounting for community factors and coworker outbreaks. METHODS: Prior to universal masking, we conducted a single-center retrospective cohort plus cross-sectional study. All HCP (1) seen by Occupational Health for COVID-like symptoms (regardless of test result) or assigned to (2) dedicated COVID-19 units, (3) units with a COVID-19 HCP outbreak, or (4) control units from 01/01/2020 to 04/15/2020 were offered serologic testing by an FDA-authorized assay plus a research assay against 67 respiratory viruses, including 11 SARS-CoV-2 antigens. Multivariable models assessed the association of demographics, job role, comorbidities, care of a COVID-19 patient, and geocoded socioeconomic status with positive serology. RESULTS: Of 654 participants, 87 (13.3%) were seropositive; among these 60.8% (N = 52) had never cared for a COVID-19 patient. Being male (OR 1.79, CI 1.05-3.04, p = 0.03), working in a unit with a HCP-outbreak unit (OR 2.21, CI 1.28-3.81, p < 0.01), living in a community with low owner-occupied housing (OR = 1.63, CI = 1.00-2.64, p = 0.05), and ethnically Latino (OR 2.10, CI 1.12-3.96, p = 0.02) were positively-associated with COVID-19 seropositivity, while working in dedicated COVID-19 units was negatively-associated (OR 0.53, CI = 0.30-0.94, p = 0.03). The research assay identified 25 additional seropositive individuals (78 [12%] vs. 53 [8%], p < 0.01). CONCLUSIONS: Prior to universal masking, HCP COVID-19 risk was dominated by workplace and community exposures while working in a dedicated COVID-19 unit was protective, suggesting that infection prevention protocols prevent patient-to-HCP transmission. Prior to universal masking, HCP COVID-19 risk was dominated by workplace and community exposures while working in a dedicated COVID-19 unit was protective, suggesting that infection prevention protocols prevent patient-to-HCP transmission.
Assuntos
COVID-19/prevenção & controle , Pessoal de Saúde , Controle de Infecções , Centros Médicos Acadêmicos , Adulto , California/epidemiologia , Infecções Comunitárias Adquiridas , Estudos Transversais , Surtos de Doenças , Feminino , Humanos , Transmissão de Doença Infecciosa do Paciente para o Profissional/prevenção & controle , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Análise de Regressão , Estudos Retrospectivos , Fatores de RiscoRESUMO
We analyzed data from two ongoing COVID-19 longitudinal serological surveys in Orange County, CA., between April 2020 and March 2021. A total of 8476 finger stick blood specimens were collected before and after a vaccination campaign. IgG levels were determined using a multiplex antigen microarray containing antigens from SARS-CoV-2, SARS, MERS, Common CoV, and Influenza. Twenty-six percent of specimens from unvaccinated Orange County residents in December 2020 were SARS-CoV-2 seropositive; out of 852 seropositive individuals 77 had symptoms and 9 sought medical care. The antibody response was predominantly against nucleocapsid (NP), full length, and S2 domain of spike. Anti-receptor binding domain (RBD) reactivity was low and not cross-reactive against SARS S1 or SARS RBD. A vaccination campaign at the University of California Irvine Medical Center (UCIMC) started on December, 2020 and 6724 healthcare workers were vaccinated within 3 weeks. Seroprevalence increased from 13% pre-vaccination to 79% post-vaccination in January, 93% in February, and 99% in March. mRNA vaccination induced higher antibody levels than natural exposure, especially against the RBD domain and cross-reactivity against SARS RBD and S1 was observed. Nucleocapsid protein antibodies can be used to distinguish vaccinees to classify pre-exposure to SARS-CoV-2 Previously infected individuals developed higher antibody titers to the vaccine than non pre-exposed individuals. Hospitalized patients in intensive care with severe disease reach significantly higher antibody levels than mild cases, but lower antibody levels compared to the vaccine. These results indicate that mRNA vaccination rapidly induces a much stronger and broader antibody response than SARS-CoV-2 infection.
RESUMO
A coronavirus antigen microarray (COVAM) was constructed containing 11 SARS-CoV-2, 5 SARS-1, 5 MERS, and 12 seasonal coronavirus recombinant proteins. The array is designed to measure immunoglobulin isotype and subtype levels in serum or plasma samples against each of the individual antigens printed on the array. We probed the COVAM with COVID-19 convalescent plasma (CCP) collected from 99 donors who recovered from a PCR+ confirmed SARS-CoV-2 infection. The results were analyzed using two computational approaches, a generalized linear model (glm) and random forest (RF) prediction model, to classify individual specimens as either Reactive or non-reactive against the SARS-CoV-2 antigens. A training set of 88 pre-COVID-19 specimens (PreCoV) collected in August 2019 and102 positive specimens from SARS-CoV-2 PCR+ confirmed COVID-19 cases was used for these analyses. Results compared with an FDA emergency use authorized (EUA) SARS-CoV2 S1-based total Ig chemiluminescence immunoassay (Ortho Clinical Diagnostics VITROS Anti-SARS-CoV-2 Total, CoV2T) and with a SARS-CoV-2 S1-S2 spike-based pseudovirus micro neutralization assay (SARS-CoV-2 reporter viral particle neutralization titration (RVPNT) showed high concordance between the three assays. Three CCP specimens that were negative by the VITROS CoV2T immunoassay were also negative by both COVAM and the RVPNT assay. Concordance between VITROS CoV2T and COVAM was 96%, VITROS CoV2T and RVPNT 93%, and RVPNT and COVAM 91%. The discordances were all weakly reactive samples near the cutoff threshold of the VITROS CoV2T immunoassay. The multiplex COVAM allows CCP to be grouped according to antibody reactivity patterns against 11 SARS-CoV-2 antigens. Unsupervised K-means analysis, via the gap statistics, as well as hierarchical clustering analysis revealed three main clusters with distinct reactivity intensities and patterns. These patterns were not recapitulated by adjusting the VITROS CoV2T or RVPNT assay thresholds. Plasma classified by COVAM reactivity patterns offers potential to improve CCP therapeutic efficacy CoV2T alone. The use of a SARS-CoV-2 antigen array can qualify CCP for administration as a treatment for acute COVID-19, and interrogate vaccine immunogenicity and performance in preclinical, clinical studies, and routine vaccination to identify antibody responses predictive of protection from infection and disease.
Assuntos
Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/terapia , SARS-CoV-2/imunologia , Imunidade Adaptativa , Coronavirus/imunologia , Humanos , Imunidade Humoral , Imunização Passiva , Soroterapia para COVID-19RESUMO
Clinic-based estimates of SARS-CoV-2 may considerably underestimate the total number of infections. Access to testing in the US has been heterogeneous and symptoms vary widely in infected persons. Public health surveillance efforts and metrics are therefore hampered by underreporting. We set out to provide a minimally biased estimate of SARS-CoV-2 seroprevalence among adults for a large and diverse county (Orange County, CA, population 3.2 million). We implemented a surveillance study that minimizes response bias by recruiting adults to answer a survey without knowledge of later being offered SARS-CoV-2 test. Several methodologies were used to retrieve a population-representative sample. Participants (n = 2979) visited one of 11 drive-thru test sites from July 10th to August 16th, 2020 (or received an in-home visit) to provide a finger pin-prick sample. We applied a robust SARS-CoV-2 Antigen Microarray technology, which has superior measurement validity relative to FDA-approved tests. Participants include a broad age, gender, racial/ethnic, and income representation. Adjusted seroprevalence of SARS-CoV-2 infection was 11.5% (95% CI: 10.5-12.4%). Formal bias analyses produced similar results. Prevalence was elevated among Hispanics (vs. other non-Hispanic: prevalence ratio [PR] = 1.47, 95% CI 1.22-1.78) and household income < $50,000 (vs. > $100,000: PR = 1.42, 95% CI: 1.14 to 1.79). Results from a diverse population using a highly specific and sensitive microarray indicate a SARS-CoV-2 seroprevalence of ~ 12 percent. This population-based seroprevalence is seven-fold greater than that using official County statistics. In this region, SARS-CoV-2 also disproportionately affects Hispanic and low-income adults.
Assuntos
Anticorpos Antivirais/análise , COVID-19 , Etnicidade/estatística & dados numéricos , Adolescente , Adulto , Viés , COVID-19/diagnóstico , COVID-19/epidemiologia , California/epidemiologia , Feminino , Humanos , Imunoglobulina G/análise , Imunoglobulina M/análise , Masculino , Pessoa de Meia-Idade , Prevalência , Vigilância em Saúde Pública , Estudos Soroepidemiológicos , Adulto JovemRESUMO
The current practice for diagnosis of COVID-19, based on SARS-CoV-2 PCR testing of pharyngeal or respiratory specimens in a symptomatic patient at high epidemiologic risk, likely underestimates the true prevalence of infection. Serologic methods can more accurately estimate the disease burden by detecting infections missed by the limited testing performed to date. Here, we describe the validation of a coronavirus antigen microarray containing immunologically significant antigens from SARS-CoV-2, in addition to SARS-CoV, MERS-CoV, common human coronavirus strains, and other common respiratory viruses. A comparison of antibody profiles detected on the array from control sera collected prior to the SARS-CoV-2 pandemic versus convalescent blood specimens from virologically confirmed COVID-19 cases demonstrates near complete discrimination of these two groups, with improved performance from use of antigen combinations that include both spike protein and nucleoprotein. This array can be used as a diagnostic tool, as an epidemiologic tool to more accurately estimate the disease burden of COVID-19, and as a research tool to correlate antibody responses with clinical outcomes.
Assuntos
Anticorpos Antivirais/sangue , Antígenos Virais/sangue , COVID-19/imunologia , SARS-CoV-2/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , COVID-19/sangue , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Análise em Microsséries/métodos , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Testes de Neutralização , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Glicoproteína da Espícula de Coronavírus/imunologiaRESUMO
BACKGROUND: The rapid spread of coronavirus disease 2019 (COVID-19) revealed significant constraints in critical care capacity. In anticipation of subsequent waves, reliable prediction of disease severity is essential for critical care capacity management and may enable earlier targeted interventions to improve patient outcomes. The purpose of this study is to develop and externally validate a prognostic model/clinical tool for predicting COVID-19 critical disease at presentation to medical care. METHODS: This is a retrospective study of a prognostic model for the prediction of COVID-19 critical disease where critical disease was defined as ICU admission, ventilation, and/or death. The derivation cohort was used to develop a multivariable logistic regression model. Covariates included patient comorbidities, presenting vital signs, and laboratory values. Model performance was assessed on the validation cohort by concordance statistics. The model was developed with consecutive patients with COVID-19 who presented to University of California Irvine Medical Center in Orange County, California. External validation was performed with a random sample of patients with COVID-19 at Emory Healthcare in Atlanta, Georgia. RESULTS: Of a total 3208 patients tested in the derivation cohort, 9% (299/3028) were positive for COVID-19. Clinical data including past medical history and presenting laboratory values were available for 29% (87/299) of patients (median age, 48 years [range, 21-88 years]; 64% [36/55] male). The most common comorbidities included obesity (37%, 31/87), hypertension (37%, 32/87), and diabetes (24%, 24/87). Critical disease was present in 24% (21/87). After backward stepwise selection, the following factors were associated with greatest increased risk of critical disease: number of comorbidities, body mass index, respiratory rate, white blood cell count, % lymphocytes, serum creatinine, lactate dehydrogenase, high sensitivity troponin I, ferritin, procalcitonin, and C-reactive protein. Of a total of 40 patients in the validation cohort (median age, 60 years [range, 27-88 years]; 55% [22/40] male), critical disease was present in 65% (26/40). Model discrimination in the validation cohort was high (concordance statistic: 0.94, 95% confidence interval 0.87-1.01). A web-based tool was developed to enable clinicians to input patient data and view likelihood of critical disease. CONCLUSIONS AND RELEVANCE: We present a model which accurately predicted COVID-19 critical disease risk using comorbidities and presenting vital signs and laboratory values, on derivation and validation cohorts from two different institutions. If further validated on additional cohorts of patients, this model/clinical tool may provide useful prognostication of critical care needs.
Assuntos
COVID-19 , Cuidados Críticos , Hospitalização , Modelos Biológicos , SARS-CoV-2 , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/sangue , COVID-19/diagnóstico , COVID-19/diagnóstico por imagem , COVID-19/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Medição de Risco , Fatores de RiscoRESUMO
To detect the presence of antibodies in blood against SARS-CoV-2 in a highly sensitive and specific manner, here we describe a robust, inexpensive ($200), 3D-printable portable imaging platform (TinyArray imager) that can be deployed immediately in areas with minimal infrastructure to read coronavirus antigen microarrays (CoVAMs) that contain a panel of antigens from SARS-CoV-2, SARS-1, MERS, and other respiratory viruses. Application includes basic laboratories and makeshift field clinics where a few drops of blood from a finger prick could be rapidly tested in parallel for the presence of antibodies to SARS-CoV-2 with a test turnaround time of only 2-4 h. To evaluate our imaging device, we probed and imaged coronavirus microarrays with COVID-19-positive and negative sera and achieved a performance on par with a commercial microarray reader 100× more expensive than our imaging device. This work will enable large scale serosurveillance, which can play an important role in the months and years to come to implement efficient containment and mitigation measures, as well as help develop therapeutics and vaccines to treat and prevent the spread of COVID-19.
Assuntos
Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Diagnóstico por Imagem/instrumentação , Diagnóstico por Imagem/métodos , Análise em Microsséries/métodos , Pneumonia Viral/diagnóstico , COVID-19 , Teste para COVID-19 , Infecções por Coronavirus/imunologia , Humanos , Microscopia , Pandemias , Pneumonia Viral/imunologia , Impressão Tridimensional , Vigilância em Saúde Pública , Pontos QuânticosRESUMO
The current practice for diagnosis of COVID-19, based on SARS-CoV-2 PCR testing of pharyngeal or respiratory specimens in a symptomatic patient at high epidemiologic risk, likely underestimates the true prevalence of infection. Serologic methods can more accurately estimate the disease burden by detecting infections missed by the limited testing performed to date. Here, we describe the validation of a coronavirus antigen microarray containing immunologically significant antigens from SARS-CoV-2, in addition to SARS-CoV, MERS-CoV, common human coronavirus strains, and other common respiratory viruses. A comparison of antibody profiles detected on the array from control sera collected prior to the SARS-CoV-2 pandemic versus convalescent blood specimens from virologically confirmed COVID-19 cases demonstrates near complete discrimination of these two groups, with improved performance from use of antigen combinations that include both spike protein and nucleoprotein. This array can be used as a diagnostic tool, as an epidemiologic tool to more accurately estimate the disease burden of COVID-19, and as a research tool to correlate antibody responses with clinical outcomes.
RESUMO
The current practice for diagnosis of SARS-CoV-2 infection relies on PCR testing of nasopharyngeal or respiratory specimens in a symptomatic patient at high epidemiologic risk. This testing strategy likely underestimates the true prevalence of infection, creating the need for serologic methods to detect infections missed by the limited testing to date. Here, we describe the development of a coronavirus antigen microarray containing immunologically significant antigens from SARS-CoV-2, in addition to SARS-CoV, MERS-CoV, common human coronavirus strains, and other common respiratory viruses. A preliminary study of human sera collected prior to the SARS-CoV-2 pandemic demonstrates overall high IgG reactivity to common human coronaviruses and low IgG reactivity to epidemic coronaviruses including SARS-CoV-2, with some cross-reactivity of conserved antigenic domains including S2 domain of spike protein and nucleocapsid protein. This array can be used to answer outstanding questions regarding SARS-CoV-2 infection, including whether baseline serology for other coronaviruses impacts disease course, how the antibody response to infection develops over time, and what antigens would be optimal for vaccine development.
RESUMO
To detect the presence of antibodies in blood against SARS-CoV-2 in a highly sensitive and specific manner, here we describe a robust, inexpensive ($200), 3D-printable portable imaging platform (TinyArray imager) that can be deployed immediately in areas with minimal infrastructure to read coronavirus antigen microarrays (CoVAMs) that contain a panel of antigens from SARS-CoV-2, SARS-1, MERS, and other respiratory viruses. Application includes basic laboratories and makeshift field clinics where a few drops of blood from a finger prick could be rapidly tested in parallel for the presence of antibodies to SARS-CoV-2 with a test turnaround time of only 2-4 h. To evaluate our imaging device, we probed and imaged coronavirus microarrays with COVID-19-positive and negative sera and achieved a performance on par with a commercial microarray reader 100x more expensive than our imaging device. This work will enable large scale serosurveillance, which can play an important role in the months and years to come to implement efficient containment and mitigation measures, as well as help develop therapeutics and vaccines to treat and prevent the spread of COVID-19.
RESUMO
The influenza virus remains a significant cause of mortality worldwide due to the limited effectiveness of currently available vaccines. A key challenge to the development of universal influenza vaccines is high antigenic diversity resulting from antigenic drift. Overcoming this challenge requires novel research tools to measure the breadth of serum antibodies directed against many virus strains across different antigenic subtypes. Here, we present a protocol for analyzing the breadth of serum antibodies against diverse influenza virus strains using a protein microarray of influenza antigens. This influenza antigen microarray is constructed by printing purified hemagglutinin and neuraminidase antigens onto a nitrocellulose-coated membrane using a microarray printer. Human sera are incubated on the microarray to bind antibodies against the influenza antigens. Quantum-dot-conjugated secondary antibodies are used to simultaneously detect IgG and IgA antibodies binding to each antigen on the microarray. Quantitative antibody binding is measured as fluorescence intensity using a portable imager. Representative results are shown to demonstrate assay reproducibility in measuring subtype-specific and cross-reactive influenza antibodies in human sera. Compared to traditional methods such as ELISA, the influenza antigen microarray provides a high throughput multiplexed approach capable of testing hundreds of sera for multiple antibody isotypes against hundreds of antigens in a short time frame, and thus has applications in sero-surveillance and vaccine development. A limitation is the inability to distinguish binding antibodies from neutralizing antibodies.
Assuntos
Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Influenza Humana/imunologia , Análise Serial de Proteínas/métodos , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Estudos de Coortes , Reações Cruzadas , Ensaio de Imunoadsorção Enzimática , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Vacinas contra Influenza/imunologia , Neuraminidase/imunologia , Estudos Prospectivos , Reprodutibilidade dos Testes , Proteínas Virais/imunologiaRESUMO
For 94 patients with culture-positive pulmonary tuberculosis, time-to-detection (TTD), acid-fast bacilli (AFB) smear, and nucleic acid amplification test (NAAT) results were reviewed. All 12 patients whose first specimen was negative by AFB smear and NAAT had prolonged TTD, indicating low transmissibility and supporting discontinuing isolation for low-risk patients.Infect Control Hosp Epidemiol 2018;39:619-621.