Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Pharm Biomed Anal ; 245: 116183, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38744031

RESUMO

A sensitive and selective LC-MS/MS method was developed and validated for the quantitation of a novel Gαi2 inhibitor, GT-14, in rat plasma using a SCIEX 6500+ triple QUAD LC-MS system equipped with an ExionLC UHPLC unit. GT-14 (m/z 265.2 → 134.1) and griseofulvin (Internal Standard, IS) (m/z 353.1 → 285.1) were detected in a positive mode by electrospray ionization (ESI) using multiple reaction monitoring (MRM). The assay was linear in the concentration range of 0.78-1000 ng/mL in rat plasma. Both accuracy and precision values were within the acceptance criteria of ±15 %, as established by FDA guidance. The matrix effect was negligible from plasma, with signal percentages of 98.5-106.9 %. The mean recovery was 104.5 %, indicating complete extraction of GT-14 from plasma. GT-14 was found to be stable under different experimental conditions. The validated method was successfully applied to evaluate plasma protein binding and in vivo pharmacokinetics of GT-14 in rats.


Assuntos
Griseofulvina , Animais , Masculino , Ratos , Griseofulvina/farmacocinética , Griseofulvina/sangue , Espectrometria de Massa com Cromatografia Líquida , Ligação Proteica , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos
2.
Cancers (Basel) ; 16(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38254786

RESUMO

We have previously shown that heterotrimeric G-protein subunit alphai2 (Gαi2) is essential for cell migration and invasion in prostate, ovarian and breast cancer cells, and novel small molecule inhibitors targeting Gαi2 block its effects on migratory and invasive behavior. In this study, we have identified potent, metabolically stable, second generation Gαi2 inhibitors which inhibit cell migration in prostate cancer cells. Recent studies have shown that chemotherapy can induce the cancer cells to migrate to distant sites to form metastases. In the present study, we determined the effects of taxanes (docetaxel), anti-androgens (enzalutamide and bicalutamide) and histone deacetylase (HDAC) inhibitors (SAHA and SBI-I-19) on cell migration in prostate cancer cells. All treatments induced cell migration, and simultaneous treatments with new Gαi2 inhibitors blocked their effects on cell migration. We concluded that a combination treatment of Gαi2 inhibitors and chemotherapy could blunt the capability of cancer cells to migrate and form metastases.

3.
Am J Clin Exp Urol ; 9(4): 318-328, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34541030

RESUMO

During prostate cancer progression, TGF-ß acts as both a tumor suppressor and tumor promoter. TGF-ß inhibits cell proliferation in normal and early-stage prostate cancer cells, but during later stages of the disease the cancer cells develop resistance to inhibitory effects on cell proliferation. In these cells, TGF-ß promotes cancer progression due to its effects on epithelial to mesenchymal transition (EMT), cell migration and invasion, and immune suppression. The intracellular mechanisms involved in the development of resistance to TGF-ß effects on cell proliferation are largely unknown. In this review, we summarized the roles of several intracellular proteins including PTEN, Id1 and JunD, which may play a role in this transition. The role of Ski/SnoN proteins in inhibition of Smad2/3 signaling is highlighted.

4.
Artigo em Inglês | MEDLINE | ID: mdl-33800316

RESUMO

Inter-institutional collaborations and partnerships play fundamental roles in developing and diversifying the basic biomedical, behavioral, and clinical research enterprise at resource-limited, minority-serving institutions. In conjunction with the Research Centers in Minority Institutions (RCMI) Program National Conference in Bethesda, Maryland, in December 2019, a special workshop was convened to summarize current practices and to explore future strategies to strengthen and sustain inter-institutional collaborations and partnerships with research-intensive majority-serving institutions. Representative examples of current inter-institutional collaborations at RCMI grantee institutions are presented. Practical approaches used to leverage institutional resources through collaborations and partnerships within regional and national network programs are summarized. Challenges and opportunities related to such collaborations are provided.


Assuntos
Grupos Minoritários , Pesquisa , Humanos , Maryland
5.
Cancers (Basel) ; 12(6)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575572

RESUMO

Heterotrimeric G-proteins are ubiquitously expressed in several cancers, and they transduce signals from activated G-protein coupled receptors. These proteins have numerous biological functions, and they are becoming interesting target molecules in cancer therapy. Previously, we have shown that heterotrimeric G-protein subunit alphai2 (Gαi2) has an essential role in the migration and invasion of prostate cancer cells. Using a structure-based approach, we have synthesized optimized small molecule inhibitors that are able to prevent specifically the activation of the Gαi2 subunit, keeping the protein in its inactive GDP-bound state. We observed that two of the compounds (13 and 14) at 10 µΜ significantly inhibited the migratory behavior of the PC3 and DU145 prostate cancer cell lines. Additionally, compound 14 at 10 µΜ blocked the activation of Gαi2 in oxytocin-stimulated prostate cancer PC3 cells, and inhibited the migratory capability of DU145 cells overexpressing the constitutively active form of Gαi2, under basal and EGF-stimulated conditions. We also observed that the knockdown or inhibition of Gαi2 negatively regulated migration of renal and ovarian cancer cell lines. Our results suggest that small molecule inhibitors of Gαi2 have potential as leads for discovering novel anti-metastatic agents for attenuating the capability of cancer cells to spread and invade to distant sites.

6.
J Biol Chem ; 295(25): 8550-8559, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32376689

RESUMO

The transcriptional coactivator YAP1 (yes-associated protein 1) regulates cell proliferation, cell-cell interactions, organ size, and tumorigenesis. Post-transcriptional modifications and nuclear translocation of YAP1 are crucial for its nuclear activity. The objective of this study was to elucidate the mechanism by which the steroid hormone androgen regulates YAP1 nuclear entry and functions in several human prostate cancer cell lines. We demonstrate that androgen exposure suppresses the inactivating post-translational modification phospho-Ser-127 in YAP1, coinciding with increased YAP1 nuclear accumulation and activity. Pharmacological and genetic experiments revealed that intact androgen receptor signaling is necessary for androgen's inactivating effect on phospho-Ser-127 levels and increased YAP1 nuclear entry. We also found that androgen exposure antagonizes Ser/Thr kinase 4 (STK4/MST1) signaling, stimulates the activity of protein phosphatase 2A, and thereby attenuates the phospho-Ser-127 modification and promotes YAP1 nuclear localization. Results from quantitative RT-PCR and CRISPR/Cas9-aided gene knockout experiments indicated that androgen differentially regulates YAP1-dependent gene expression. Furthermore, an unbiased computational analysis of the prostate cancer data from The Cancer Genome Atlas revealed that YAP1 and androgen receptor transcript levels correlate with each other in prostate cancer tissues. These findings indicate that androgen regulates YAP1 nuclear localization and its transcriptional activity through the androgen receptor-STK4/MST1-protein phosphatase 2A axis, which may have important implications for human diseases such as prostate cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Androgênios/farmacologia , Núcleo Celular/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Linhagem Celular Tumoral , Bases de Dados Genéticas , Expressão Gênica/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Fosforilação/efeitos dos fármacos , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas de Sinalização YAP
7.
Prostate ; 80(5): 412-423, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31995655

RESUMO

BACKGROUND: Mammalian target of rapamycin (mTOR) is a downstream substrate activated by PI3K/AKT pathway and it is essential for cell migration. It exists as two complexes: mTORC1 and mTORC2. mTORC1 is known to be regulated by active AKT, but the activation of mTORC2 is poorly understood. In this study, we investigated the roles and differential activation of the two mTOR complexes during cell migration in prostate cancer cells. METHODS: We used small interfering RNA to silence the expression of Rac1 and the main components of mTOR complexes (regulatory associated protein of mTOR [RAPTOR] and rapamycin-insensitive companion of mTOR [RICTOR]) in LNCaP, DU145, and PC3 prostate cancer cell lines. We performed transwell migration assay to evaluate the migratory capability of the cells, and Western blot analysis to study the activation levels of mTOR complexes. RESULTS: Specific knockdown of RAPTOR and RICTOR caused a decrease of cell migration, suggesting their essential role in prostate cancer cell movement. Furthermore, epidermal growth factor (EGF) treatments induced the activation of both the mTOR complexes. Lack of Rac1 activity in prostate cancer cells blocked EGF-induced activation of mTORC2, but had no effect on mTORC1 activation. Furthermore, the overexpression of constitutively active Rac1 resulted in significant increase in cell migration and activation of mTORC2 in PC3 cells, but had no effect on mTORC1 activation. Active Rac1 was localized in the plasma membrane and was found to be in a protein complex, with RICTOR, but not RAPTOR. CONCLUSION: We suggest that EGF-induced activation of Rac1 causes the activation of mTORC2 via RICTOR. This mechanism plays a critical role in prostate cancer cell migration.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Aminoquinolinas/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Fator de Crescimento Epidérmico/farmacologia , Técnicas de Silenciamento de Genes , Humanos , Masculino , Células PC-3 , Pirimidinas/farmacologia , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Proteína Companheira de mTOR Insensível à Rapamicina/deficiência , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Proteína Regulatória Associada a mTOR/deficiência , Proteína Regulatória Associada a mTOR/genética , Proteína Regulatória Associada a mTOR/metabolismo , Sirolimo/farmacologia , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Proteínas rac1 de Ligação ao GTP/metabolismo
8.
J Cell Physiol ; 234(1): 802-815, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-30078221

RESUMO

Tumor cell motility is the essential step in cancer metastasis. Previously, we showed that oxytocin and epidermal growth factor (EGF) effects on cell migration in prostate cancer cells require Giα2 protein. In the current study, we investigated the interactions among G-protein coupled receptor (GPCR), Giα2, PI3-kinase, and Rac1 activation in the induction of migratory and invasive behavior by diverse stimuli. Knockdown and knockout of endogenous Giα2 in PC3 cells resulted in attenuation of transforming growth factor ß1 (TGFß1), oxytocin, SDF-1α, and EGF effects on cell migration and invasion. In addition, knockdown of Giα2 in E006AA cells attenuated cell migration and overexpression of Giα2 in LNCaP cells caused significant increase in basal and EGF-stimulated cell migration. Pretreatment of PC3 cells with Pertussis toxin resulted in attenuation of TGFß1- and oxytocin-induced migratory behavior and PI3-kinase activation without affecting EGF-induced PI3-kinase activation and cell migration. Basal- and EGF-induced activation of Rac1 in PC3 and DU145 cells were not affected in cells after Giα2 knockdown. On the other hand, Giα2 knockdown abolished the migratory capability of PC3 cells overexpressing constitutively active Rac1. The knockdown or knockout of Giα2 resulted in impaired formation of lamellipodia at the leading edge of the migrating cells. We conclude that Giα2 protein acts at two different levels which are both dependent and independent of GPCR signaling to induce cell migration and invasion in prostate cancer cells and its action is downstream of PI3-kinase-AKT-Rac1 axis.


Assuntos
Movimento Celular/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Neoplasias da Próstata/genética , Proteínas rac1 de Ligação ao GTP/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Quimiocina CXCL12/genética , Fator de Crescimento Epidérmico/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Proteína Oncogênica v-akt/genética , Ocitocina/genética , Fosfatidilinositol 3-Quinases/genética , Fosforilação , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/patologia , Fator de Crescimento Transformador beta1/genética
9.
Carcinogenesis ; 39(4): 546-555, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29474521

RESUMO

Epidemiological studies show that the incidence and mortality rates of prostate cancer (PCa) are significantly higher in African-American (AA) men when compared with Caucasian (CA) men in the United States. Transforming growth factor ß (TGFß) signaling pathway is linked to health disparities in AAs. Recent studies suggest a role of TGFß3 in cancer metastases and its effect on the migratory and invasive behavior; however, its role in PCa in AA men has not been studied. We determined the circulating levels of TGFß3 in AA and CA men diagnosed with PCa using ELISA. We analyzed serum samples from both AA and CA men diagnosed with and without PCa. We show that AA PCa patients had higher levels of TGFß3 protein compared with AA controls and CA patients. In fact, TGFß3 protein levels in serum were higher in AA men without PCa compared with the CA population, which may correlate with more aggressive disease seen in AA men. Studies on AA-derived PCa cell lines revealed that TGFß3 protein levels were also higher in these cells compared with CA-derived PCa cell lines. Our studies also reveal that TGFß does not inhibit cell proliferation in AA-derived PCa cell lines, but it does induce migration and invasion through activation of PI3K pathway. We suggest that increased TGFß3 levels are responsible for development of aggressive PCa in AA patients as a consequence of development of resistance to inhibitory effects of TGFß on cell proliferation and induction of invasive metastatic behavior.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias da Próstata/epidemiologia , Neoplasias da Próstata/metabolismo , Fator de Crescimento Transformador beta3/sangue , Negro ou Afro-Americano , Idoso , Movimento Celular/fisiologia , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica/patologia , Neoplasias da Próstata/patologia , Transdução de Sinais/fisiologia , População Branca
10.
Prostate ; 78(5): 377-389, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29341212

RESUMO

BACKGROUND: Transforming growth factor-ß (TGF-ß) acts as a tumor suppressor in normal epithelial cells but as a tumor promoter in advanced prostate cancer cells. PI3-kinase pathway mediates TGF-ß effects on prostate cancer cell migration and invasion. PTEN inhibits PI3-kinase pathway and is frequently mutated in prostate cancers. We investigated possible role(s) of PTEN in TGF-ß effects on proliferation and migration in prostate cancer cells. METHODS: Expression of PTEN mRNA and proteins were determined using RT-PCR and Western blotting in RWPE1 and DU145 cells. We also studied the role of PTEN in TGF-ß effects on cell proliferation and migration in DU145 cells after transient silencing of endogenous PTEN. Conversely, we determined the role of PTEN in cell proliferation and migration after over-expression of PTEN in PC3 cells which lack endogenous PTEN. RESULTS: TGF-ß1 and TGF-ß3 had no effect on PTEN mRNA levels but both isoforms increased PTEN protein levels in DU145 and RWPE1 cells indicating that PTEN may mediate TGF-ß effects on cell proliferation. Knockdown of PTEN in DU145 cells resulted in significant increase in cell proliferation which was not affected by TGF-ß isoforms. PTEN overexpression in PC3 cells inhibited cell proliferation. Knockdown of endogenous PTEN enhanced cell migration in DU145 cells, whereas PTEN overexpression reduced migration in PC3 cells and reduced phosphorylation of AKT in response to TGF-ß. CONCLUSION: We conclude that PTEN plays a role in inhibitory effects of TGF-ß on cell proliferation whereas its absence may enhance TGF-ß effects on activation of PI3-kinase pathway and cell migration.


Assuntos
Movimento Celular/efeitos dos fármacos , PTEN Fosfo-Hidrolase/metabolismo , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , Fator de Crescimento Transformador beta1/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Masculino , PTEN Fosfo-Hidrolase/biossíntese , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Proteínas Recombinantes/farmacologia , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Fator de Crescimento Transformador beta3/antagonistas & inibidores , Fator de Crescimento Transformador beta3/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA