Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(20)2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36298198

RESUMO

The proposed work uses fixed lag smoothing on the interactive multiple model-integrated probabilistic data association algorithm (IMM-IPDA) to enhance its performance. This approach makes use of the advantages of the fixed lag smoothing algorithm to track the motion of a maneuvering target while it is surrounded by clutter. The suggested method provides a new mathematical foundation in terms of smoothing for mode probabilities in addition to the target trajectory state and target existence state by including the smoothing advantages. The suggested fixed lag smoothing IMM-IPDA (FLs IMM-IPDA) method's root mean square error (RMSE), true track rate (TTR), and mode probabilities are compared to those of other recent algorithms in the literature in this study. The results clearly show that the proposed algorithm outperformed the already-known methods in the literature in terms of these above parameters of interest.


Assuntos
Algoritmos , Movimento (Física) , Probabilidade
2.
Front Microbiol ; 13: 922393, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016784

RESUMO

Coronavirus disease 2019 (COVID-19) has been a pandemic disease reported in almost every country and causes life-threatening, severe respiratory symptoms. Recent studies showed that various environmental selection pressures challenge the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infectivity and, in response, the virus engenders new mutations, leading to the emergence of more virulent strains of WHO concern. Advance prediction of the forthcoming virulent SARS-CoV-2 strains in response to the principal environmental selection pressures like temperature and solar UV radiation is indispensable to overcome COVID-19. To discover the UV-solar radiation-driven genomic adaption of SARS-CoV-2, a curated dataset of 2,500 full-grade genomes from five different UVindex regions (25 countries) was subjected to in-depth downstream genome-wide analysis. The recurrent variants that best respond to UV-solar radiations were extracted and extensively annotated to determine their possible effects and impacts on gene functions. This study revealed 515 recurrent single nucleotide variants (rcntSNVs) as SARS-CoV-2 genomic responses to UV-solar radiation, of which 380 were found to be distinct. For all discovered rcntSNVs, 596 functional effects (rcntEffs) were detected, containing 290 missense, 194 synonymous, 81 regulatory, and 31 in the intergenic region. The highest counts of missense rcntSNVs in spike (27) and nucleocapsid (26) genes explain the SARS-CoV-2 genomic adjustment to escape immunity and prevent UV-induced DNA damage, respectively. Among all, the most commonly observed rcntEffs were four missenses (RdRp-Pro327Leu, N-Arg203Lys, N-Gly204Arg, and Spike-Asp614Gly) and one synonymous (ORF1ab-Phe924Phe) functional effects. The highest number of rcntSNVs found distinct and were uniquely attributed to the specific UVindex regions, proposing solar-UV radiation as one of the driving forces for SARS-CoV-2 differential genomic adaptation. The phylogenetic relationship indicated the high UVindex region populating SARS-CoV-2 as the recent progenitor of all included samples. Altogether, these results provide baseline genomic data that may need to be included for preparing UVindex region-specific future diagnostic and vaccine formulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA