Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 18(9): e0276133, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37682884

RESUMO

Robotics and artificial intelligence have played a significant role in developing assistive technologies for people with motor disabilities. Brain-Computer Interface (BCI) is a communication system that allows humans to communicate with their environment by detecting and quantifying control signals produced from different modalities and translating them into voluntary commands for actuating an external device. For that purpose, classification the brain signals with a very high accuracy and minimization of the errors is of profound importance to the researchers. So in this study, a novel framework has been proposed to classify the binary-class electroencephalogram (EEG) data. The proposed framework is tested on BCI Competition IV dataset 1 and BCI Competition III dataset 4a. Artifact removal from EEG data is done through preprocessing, followed by feature extraction for recognizing discriminative information in the recorded brain signals. Signal preprocessing involves the application of independent component analysis (ICA) on raw EEG data, accompanied by the employment of common spatial pattern (CSP) and log-variance for extracting useful features. Six different classification algorithms, namely support vector machine, linear discriminant analysis, k-nearest neighbor, naïve Bayes, decision trees, and logistic regression, have been compared to classify the EEG data accurately. The proposed framework achieved the best classification accuracies with logistic regression classifier for both datasets. Average classification accuracy of 90.42% has been attained on BCI Competition IV dataset 1 for seven different subjects, while for BCI Competition III dataset 4a, an average accuracy of 95.42% has been attained on five subjects. This indicates that the model can be used in real time BCI systems and provide extra-ordinary results for 2-class Motor Imagery (MI) signals classification applications and with some modifications this framework can also be made compatible for multi-class classification in the future.


Assuntos
Algoritmos , Inteligência Artificial , Humanos , Teorema de Bayes , Modelos Logísticos , Eletroencefalografia
2.
Micromachines (Basel) ; 14(4)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37421050

RESUMO

This paper presents a deep neural network (DNN) based design optimization methodology for dual-axis microelectromechanical systems (MEMS) capacitive accelerometer. The proposed methodology considers the geometric design parameters and operating conditions of the MEMS accelerometer as input parameters and allows to analyze the effect of the individual design parameters on the output responses of the sensor using a single model. Moreover, a DNN-based model allows to simultaneously optimize the multiple output responses of the MEMS accelerometers in an efficient manner. The efficiency of the proposed DNN-based optimization model is compared with the design of the computer experiments (DACE) based multiresponse optimization methodology presented in the Literature, which showed a better performance in terms of two output performance metrics, i.e., mean absolute error (MAE) and root mean squared error (RMSE).

3.
Artigo em Inglês | MEDLINE | ID: mdl-34977844

RESUMO

BACKGROUND: The SARS-Cov-2 virus (commonly known as COVID-19) has resulted in substantial casualties in many countries. The first case of COVID-19 was reported in China towards the end of 2019. Cases started to appear in several other countries (including Pakistan) by February 2020. To analyze the spreading pattern of the disease, several researchers used the Susceptible-Infectious-Recovered (SIR) model. However, the classical SIR model cannot predict the death rate. OBJECTIVE: In this article, we present a Death-Infection-Recovery (DIR) model to forecast the virus spread over a window of one (minimum) to fourteen (maximum) days. Our model captures the dynamic behavior of the virus and can assist authorities in making decisions on non-pharmaceutical interventions (NPI), like travel restrictions, lockdowns, etc. METHOD: The size of training dataset used was 134 days. The Auto Regressive Integrated Moving Average (ARIMA) model was implemented using XLSTAT (add-in for Microsoft Excel), whereas the SIR and the proposed DIR model was implemented using python programming language. We compared the performance of DIR model with the SIR model and the ARIMA model by computing the Percentage Error and Mean Absolute Percentage Error (MAPE). RESULTS: Experimental results demonstrate that the maximum% error in predicting the number of deaths, infections, and recoveries for a period of fourteen days using the DIR model is only 2.33%, using ARIMA model is 10.03% and using SIR model is 53.07%. CONCLUSION: This percentage of error obtained in forecasting using DIR model is significantly less than the% error of the compared models. Moreover, the MAPE of the DIR model is sufficiently below the two compared models that indicates its effectiveness.

4.
Sensors (Basel) ; 20(23)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297516

RESUMO

A state-of-the-art brain-computer interface (BCI) system includes brain signal acquisition, noise removal, channel selection, feature extraction, classification, and an application interface. In functional near-infrared spectroscopy-based BCI (fNIRS-BCI) channel selection may enhance classification performance by identifying suitable brain regions that contain brain activity. In this study, the z-score method for channel selection is proposed to improve fNIRS-BCI performance. The proposed method uses cross-correlation to match the similarity between desired and recorded brain activity signals, followed by forming a vector of each channel's correlation coefficients' maximum values. After that, the z-score is calculated for each value of that vector. A channel is selected based on a positive z-score value. The proposed method is applied to an open-access dataset containing mental arithmetic (MA) and motor imagery (MI) tasks for twenty-nine subjects. The proposed method is compared with the conventional t-value method and with no channel selected, i.e., using all channels. The z-score method yielded significantly improved (p < 0.0167) classification accuracies of 87.2 ± 7.0%, 88.4 ± 6.2%, and 88.1 ± 6.9% for left motor imagery (LMI) vs. rest, right motor imagery (RMI) vs. rest, and mental arithmetic (MA) vs. rest, respectively. The proposed method is also validated on an open-access database of 17 subjects, containing right-hand finger tapping (RFT), left-hand finger tapping (LFT), and dominant side foot tapping (FT) tasks.The study shows an enhanced performance of the z-score method over the t-value method as an advancement in efforts to improve state-of-the-art fNIRS-BCI systems' performance.

5.
J Neural Eng ; 17(5): 056025, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33055382

RESUMO

OBJECTIVE: In this paper, a novel methodology for feature extraction to enhance classification accuracy of functional near-infrared spectroscopy (fNIRS)-based two-class and three-class brain-computer interface (BCI) is presented. APPROACH: Novel features are extracted using vector-based phase analysis method. Changes in oxygenated [Formula: see text] and de-oxygenated [Formula: see text]) haemoglobin are used to calculate four novel features: change in cerebral blood volume ([Formula: see text]), change in cerebral oxygen exchange ([Formula: see text]), vector magnitude (|L|) and angle (k). [Formula: see text] is the sum and [Formula: see text] is difference of [Formula: see text] and [Formula: see text], whereas |L| is magnitude and k is angle of vector. fNIRS signals of seven healthy subjects, corresponding to left-hand index finger tapping (LFT), right-hand index finger tapping (RFT) and rest are acquired from motor cortex using multi-channel continuous-wave imaging system. After removing physiological and instrumental noises from the acquired signals, the four novel features are calculated. For validation, conventional temporal, spatial and spatiotemporal features; mean, peak, slope, variance, kurtosis and skewness are also calculated using [Formula: see text] and[Formula: see text]. All possible two-feature and three-feature combinations of the novel and conventional features are then used to classify two-class (LFT vs RFT) and three-class (LFT vs RFT vs rest) fNIRS-BCI using linear discriminant analysis. MAIN RESULTS: Results demonstrate that combination of four novel features yields significantly higher average classification accuracies of 98.7 ± 1.0% and 85.4 ± 1.4% as compared to 68.7 ± 6.9% and 53.6 ± 10.6% using conventional features for two-class and three-class problem, respectively. Validation of proposed method on an open access database containing RFT, LFT and dominant side foot tapping tasks for 30 subjects also shows improvement in average classification accuracies for two-class and three-class fNIRS-BCIs. SIGNIFICANCE: This study provides a step forward in improving the classification accuracies of state-of-the-art fNIRS-BCIs by showing significant improvement in classification accuracies of two-class and three-class fNIRS-BCIs using novel features extracted by vector-based phase analysis.


Assuntos
Interfaces Cérebro-Computador , Córtex Motor , Análise Discriminante , Humanos , Imaginação , Espectroscopia de Luz Próxima ao Infravermelho
6.
Micromachines (Basel) ; 11(9)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957573

RESUMO

This paper presents microfabrication process-driven design of a multi-degree of freedom (multi-DoF) non-resonant electrostatic microelectromechanical systems (MEMS) gyroscope by considering the design constraints of commercially available low-cost and widely-used silicon-on-insulator multi-user MEMS processes (SOIMUMPs), with silicon as a structural material. The proposed design consists of a 3-DoF drive mode oscillator with the concept of addition of a collider mass which transmits energy from the drive mass to the passive sense mass. In the sense direction, 2-DoF sense mode oscillator is used to achieve dynamically-amplified displacement in the sense mass. A detailed analytical model for the dynamic response of MEMS gyroscope is presented and performance characteristics are validated through finite element method (FEM)-based simulations. The effect of operating air pressure and temperature variations on the air damping and resulting dynamic response is analyzed. The thermal stability of the design and corresponding effect on the mechanical and capacitive sensitivity, for an operating temperature range of -40 °C to 100 °C, is presented. The results showed that the proposed design is thermally stable, robust to environmental variations, and process tolerances with a wide operational bandwidth and high sensitivity. Moreover, a system-level model of the proposed gyroscope and its integration with the sensor electronics is presented to estimate the voltage sensitivity under the constraints of the readout electronic circuit.

7.
Biomed Res Int ; 2018: 2695106, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29888252

RESUMO

Brain Computer Interface (BCI) determines the intent of the user from a variety of electrophysiological signals. These signals, Slow Cortical Potentials, are recorded from scalp, and cortical neuronal activity is recorded by implanted electrodes. This paper is focused on design of an embedded system that is used to control the finger movements of an upper limb prosthesis using Electroencephalogram (EEG) signals. This is a follow-up of our previous research which explored the best method to classify three movements of fingers (thumb movement, index finger movement, and first movement). Two-stage logistic regression classifier exhibited the highest classification accuracy while Power Spectral Density (PSD) was used as a feature of the filtered signal. The EEG signal data set was recorded using a 14-channel electrode headset (a noninvasive BCI system) from right-handed, neurologically intact volunteers. Mu (commonly known as alpha waves) and Beta Rhythms (8-30 Hz) containing most of the movement data were retained through filtering using "Arduino Uno" microcontroller followed by 2-stage logistic regression to obtain a mean classification accuracy of 70%.


Assuntos
Movimento/fisiologia , Próteses e Implantes , Polegar/fisiologia , Extremidade Superior/fisiologia , Adulto , Membros Artificiais , Interfaces Cérebro-Computador , Eletrodos , Eletroencefalografia , Feminino , Dedos , Mãos/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Processamento de Sinais Assistido por Computador
8.
Biomed Res Int ; 2018: 9861350, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29568777

RESUMO

Background. Brain computer interface (BCI) is a combination of software and hardware communication protocols that allow brain to control external devices. Main purpose of BCI controlled external devices is to provide communication medium for disabled persons. Now these devices are considered as a new way to rehabilitate patients with impunities. There are certain potentials present in electroencephalogram (EEG) that correspond to specific event. Main issue is to detect such event related potentials online in such a low signal to noise ratio (SNR). In this paper we propose a method that will facilitate the concept of online processing by providing an efficient filtering implementation in a hardware friendly environment by switching to finite impulse response (FIR). Main focus of this research is to minimize latency and computational delay of preprocessing related to any BCI application. Four different finite impulse response (FIR) implementations along with large Laplacian filter are implemented in Xilinx System Generator. Efficiency of 25% is achieved in terms of reduced number of coefficients and multiplications which in turn reduce computational delays accordingly.


Assuntos
Interfaces Cérebro-Computador , Encéfalo/fisiologia , Pessoas com Deficiência/reabilitação , Algoritmos , Eletroencefalografia/métodos , Potenciais Evocados/fisiologia , Humanos , Processamento de Sinais Assistido por Computador/instrumentação , Razão Sinal-Ruído , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA