Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Technol Cancer Res Treat ; 23: 15330338241266479, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39043036

RESUMO

Objective: In external radiotherapy, dose boluses and compensators are used for treatment of irregular facial topography surfaces. In such cases, skewed isodose curves need to be addressed using a bolus that gives the deep dose distribution a shape adapted to the anatomical structures to be protected or irradiated. The combination of 3D modeling and printing technologies is a promising alternative to the conventional inaccurate and uncomfortable bolus fabrication technique. In this work, the proposed technologies will be used in the design and fabrication of high-performance and high-accuracy boluses that respond to the main constraints on metrology, adhesion to the patient's surface, comfort, and dose delivery. Methods: As a first phase in the implementation of the proposed solution, 3D printing materials, to be used in the fabrication of radiotherapy boluses, were selected and characterized to check how they respond to the required criteria on functionality, safety, and quality. Results: The obtained results show that among the studied materials, thermoplastic polyurethane (TPU) was found to be slightly more suitable than polylactic acid (PLA) for the fabrication of 3D printing boluses but for some kinds of treatments, PLA may be preferred despite its relative rigidity. Conclusion: In this work, procedures for dose bolus fabrication were proposed, and necessary data were obtained for some available 3D printing materials (TPU and PLA) that can be used for targeted applications. This achievement is a major step toward the final implementation of 3D modeling and printing technologies for the efficient fabrication of radiotherapy dose boluses.


Assuntos
Impressão Tridimensional , Dosagem Radioterapêutica , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Poliésteres/química , Poliuretanos/química
2.
Luminescence ; 39(5): e4755, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38689564

RESUMO

The ultimate goal of this work is the study of the effect of luminescence stimulations and signals reading modes combinations on the thermoluminescence intensity and glow curve behaviour for the same X-ray irradiation dose. Three interesting stimulating and reading modes are considered, namely, infrared stimulated luminescence (IRSL), blue light-emitting diode stimulated luminescence (BLSL) and thermally stimulated luminescence (TSL). The studied stimulation and reading modes combination protocols are (Protocol 1) IRSL-TSL, (Protocol 2) IRSL-BLSL-TSL and (Protocol 3) BLSL-IRSL-TSL. Experiments are performed on beryllium oxide (BeO) dosimeter. Results demonstrate well that the combination of reading modes have direct impact on the TL signal in terms of intensity and glow curve shape. It was also found that when reading modes are correctly combined, particularly when IRSL is applied first, then BLSL and TL, it is possible to collect two or more exploitable signals of different stimulation types for the same irradiation that can be used for different purposes and final applications.


Assuntos
Berílio , Dosimetria Termoluminescente , Berílio/química , Luminescência , Raios Infravermelhos , Medições Luminescentes , Temperatura
3.
J Radiol Prot ; 43(1)2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36599152

RESUMO

Hadron radiation therapy is of great interest worldwide. Heavy-ion beams provide ideal therapeutic conditions for deep-seated local tumours. At the Heidelberg Ion Beam Therapy Center (HIT, Germany), protons and carbon ions are already integrated into the clinical routine, while16O ions are still used for research only. To ensure the protection of the technical staff and members of the public, it is required to estimate the neutron dose distribution for optimal working conditions and at different locations. The Particle and Heavy Ion Transport Code System (PHITS) is used in this work to evaluate the dose rate distribution of secondary neutrons in a treatment room at HIT where16O ions are used: an equivalent target in soft tissue is considered in the shielding assessment to simulate the interaction of the beam with patients. The angular dependence of neutron fluences and energy spectra around the considered phantom were calculated. Alongside the spatial distribution of the neutron and photon fluence, a map of the effective dose rate was estimated using the ICRP fluence-to-effective dose conversion coefficients, exploiting the PHITS code's built-in capabilities. The capability of the actual shielding design of the studied HIT treatment room was approved.


Assuntos
Nêutrons , Humanos , Doses de Radiação , Método de Monte Carlo , Transporte de Íons , Íons
4.
Radiat Environ Biophys ; 57(4): 365-373, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30206695

RESUMO

In this work, dose measurements were performed to evaluate an external radiotherapy treatment plan and, particularly, to validate dose calculations for a lung lesion case. Doses were calculated by the Varian Eclipse treatment planning system using the AAA anisotropic analytical algorithm. The measurements were performed using a Rando anthropomorphic phantom and TLD700 thermoluminescent dosimeters. The comparison between doses calculated and doses measured by means of thermoluminescence (TL) shows compatibility except for a few points, due to the limitations in the heterogeneity correction used for the case studied here. The deviation between the calculated and measured doses is about 6.5% for low (< 0.5 Gy) doses and about 1% for higher doses (> 0.5 Gy).The deviation between AAA-calculated and TL-measured doses was also found to be higher in proximity to heterogeneous tissue interfaces.


Assuntos
Neoplasias Pulmonares/radioterapia , Imagens de Fantasmas , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador/instrumentação , Humanos , Radiometria , Dosagem Radioterapêutica
5.
Appl Radiat Isot ; 82: 200-10, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24041807

RESUMO

In this work, we present a mixed software/hardware implementation of 2-D signals encoder/decoder using dyadic discrete wavelet transform (DWT) based on quadrature mirror filters (QMF); using fast wavelet Mallat's algorithm. This work is designed and compiled on the embedded development kit EDK6.3i, and the synthesis software, ISE6.3i, which is available with Xilinx Virtex-IIV2MB1000 FPGA. Huffman coding scheme is used to encode the wavelet coefficients so that they can be transmitted progressively through an Ethernet TCP/IP based connection. The possible reconfiguration can be exploited to attain higher performance. The design will be integrated with the neutron radiography system that is used with the Es-Salem research reactor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA