Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ASAIO J ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483814

RESUMO

Extracorporeal membrane oxygenation (ECMO) is often associated with disturbances in acid/base status that can be triggered by the underlying pathology or the ECMO circuit itself. Extracorporeal membrane oxygenation is known to cause hypocapnia, but the impact of reduced partial pressure of carbon dioxide (pCO2) on biomarkers of tissue perfusion during veno-arterial (VA)-ECMO has not been evaluated. To study the impact of low pCO2 on perfusion indices in VA-ECMO, we placed Sprague-Dawley rats on an established VA-ECMO circuit using either an oxygen/carbon dioxide mixture (O2 95%, CO2 5%) or 100% O2 delivered through the oxygenator (n = 5 per cohort). Animals receiving 100% O2 developed a significant VA CO2 difference (pCO2 gap) and rising blood lactate levels that were inversely proportional to the decrease in pCO2 values. In contrast, pCO2 gap and lactate levels remained similar to pre-ECMO baseline levels in animals receiving the O2/CO2 mixture. More importantly, there was no significant difference in venous oxygen saturation (SvO2) between the two groups, suggesting that elevated blood lactate levels observed in the rats receiving 100% O2 were a response to oxygenator induced hypocapnia and alkaline pH rather than reduced perfusion or underlying tissue hypoxia. These findings have implications in clinical and experimental extracorporeal support contexts.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37683721

RESUMO

BACKGROUND: Factor XII (FXII) is a multifunctional protease capable of activating thrombotic and inflammatory pathways. FXII has been linked to thrombosis in extracorporeal membrane oxygenation (ECMO), but the role of FXII in ECMO-induced inflammatory complications has not been studied. We used novel gene-targeted FXII- deficient rats to evaluate the role of FXII in ECMO-induced thromboinflammation. METHODS: FXII-deficient (FXII-/-) Sprague-Dawley rats were generated using CRISPR/Cas9. A minimally invasive venoarterial (VA) ECMO model was used to compare wild-type (WT) and FXII-/- rats in 2 separate experimental cohorts: rats placed on ECMO without pharmacologic anticoagulation and rats anticoagulated with argatroban. Rats were maintained on ECMO for 1 hour or until circuit failure occurred. Comparisons were made with unchallenged rats and rats that underwent a sham surgical procedure without ECMO. RESULTS: FXII-/- rats were maintained on ECMO without pharmacologic anticoagulation with low resistance throughout the 1-hour experiment. In contrast, WT rats placed on ECMO without anticoagulation developed thrombotic circuit failure within 10 minutes. Argatroban provided a means to maintain WT and FXII-/- rats on ECMO for the 1-hour time frame without thrombotic complications. Analyses of these rats demonstrated that ECMO resulted in increased neutrophil migration into the liver that was significantly blunted by FXII deficiency. ECMO also resulted in increases in high molecular weight kininogen cleavage and complement activation that were abrogated by genetic deletion of FXII. CONCLUSIONS: FXII initiates hemostatic system activation and key inflammatory sequelae in ECMO, suggesting that therapies targeting FXII could limit both thromboembolism and inopportune inflammatory complications in this setting.

3.
Blood Adv ; 7(8): 1404-1417, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36240297

RESUMO

Previous studies suggested that contact pathway factors drive thrombosis in mechanical circulation. We used a rabbit model of veno-arterial extracorporeal circulation (VA-ECMO) to evaluate the role of factors XI and XII in ECMO-associated thrombosis and organ damage. Factors XI and XII (FXI, FXII) were depleted using established antisense oligonucleotides before placement on a blood-primed VA-ECMO circuit. Decreasing FXII or FXI to < 5% of baseline activity significantly prolonged ECMO circuit lifespan, limited the development of coagulopathy, and prevented fibrinogen consumption. Histological analysis suggested that FXII depletion mitigated interstitial pulmonary edema and hemorrhage whereas heparin and FXI depletion did not. Neither FXI nor FXII depletion was associated with significant hemorrhage in other organs. In vitro analysis showed that membrane oxygenator fibers (MOFs) alone are capable of driving significant thrombin generation in a FXII- and FXI-dependent manner. MOFs also augment thrombin generation triggered by low (1 pM) or high (5 pM) tissue factor concentrations. However, only FXI elimination completely prevented the increase in thrombin generation driven by MOFs, suggesting MOFs augment thrombin-mediated FXI activation. Together, these results suggest that therapies targeting FXII or FXI limit thromboembolic complications associated with ECMO. Further studies are needed to determine the contexts wherein targeting FXI and FXII, either alone or in combination, would be most beneficial in ECMO. Moreover, studies are also needed to determine the potential mechanisms coupling FXII to end-organ damage in ECMO.


Assuntos
Oxigenação por Membrana Extracorpórea , Trombose , Animais , Coelhos , Fator XII , Oxigenação por Membrana Extracorpórea/efeitos adversos , Trombina/metabolismo , Fator XI/metabolismo , Trombose/etiologia
4.
ASAIO J ; 68(12): e243-e250, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36229020

RESUMO

The mechanisms driving the pathologic state created by extracorporeal membrane oxygenation (ECMO) remain poorly defined. We developed the first complete blood-primed murine model of veno-arterial ECMO capable of maintaining oxygenation and perfusion, allowing molecular studies that are unavailable in larger animal models. Fifteen C57BL/6 mice underwent ECMO by cannulating the left common carotid artery and the right external jugular vein. The mean arterial pressure was measured through cannulation of the femoral artery. The blood-primed circuit functioned well. Hemodynamic parameters remained stable and blood gas analyses showed adequate oxygenation of the animals during ECMO over a 1-hour timeframe. A significant increase in plasma-free hemoglobin was observed following ECMO, likely secondary to hemolysis within the miniaturized circuit components. Paralleling clinical data, ECMO resulted in a significant increase in plasma levels of multiple proinflammatory cytokines as well as evidence of early signs of kidney and liver dysfunction. These results demonstrate that this novel, miniature blood-primed ECMO circuit represents a functional murine model of ECMO that will provide unique opportunities for further studies to expand our knowledge of ECMO-related pathologies using the wealth of available genetic, pharmacological, and biochemical murine reagents not available for other species.


Assuntos
Oxigenação por Membrana Extracorpórea , Animais , Camundongos , Oxigenação por Membrana Extracorpórea/métodos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Hemodinâmica , Cateterismo/métodos
5.
Am J Physiol Lung Cell Mol Physiol ; 313(5): L752-L762, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28775095

RESUMO

Tissue matrix remodeling and fibrosis leading to loss of pulmonary arterial and right ventricular compliance are important features of both experimental and clinical pulmonary hypertension (PH). We have previously reported that transglutaminase 2 (TG2) is involved in PH development while others have shown it to be a cross-linking enzyme that participates in remodeling of extracellular matrix in fibrotic diseases in general. In the present studies, we used a mouse model of experimental PH (Sugen 5416 and hypoxia; SuHypoxia) and cultured primary human cardiac and pulmonary artery adventitial fibroblasts to evaluate the relationship of TG2 to the processes of fibrosis, protein cross-linking, extracellular matrix collagen accumulation, and fibroblast-to-myofibroblast transformation. We report here that TG2 expression and activity as measured by serotonylated fibronectin and protein cross-linking activity along with fibrogenic markers are significantly elevated in lungs and right ventricles of SuHypoxic mice with PH. Similarly, TG2 expression and activity, protein cross-linking activity, and fibrogenic markers are significantly increased in cultured cardiac and pulmonary artery adventitial fibroblasts in response to hypoxia exposure. Pharmacological inhibition of TG2 activity with ERW1041E significantly reduced hypoxia-induced cross-linking activity and synthesis of collagen 1 and α-smooth muscle actin in both the in vivo and in vitro studies. TG2 short interfering RNA had a similar effect in vitro. Our results suggest that TG2 plays an important role in hypoxia-induced pulmonary and right ventricular tissue matrix remodeling in the development of PH.


Assuntos
Fibroblastos/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Hipertensão Pulmonar/metabolismo , Pulmão/metabolismo , Artéria Pulmonar/metabolismo , Transglutaminases/metabolismo , Animais , Células Cultivadas , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Humanos , Hipertensão Pulmonar/patologia , Hipóxia/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Miofibroblastos/metabolismo , Proteína 2 Glutamina gama-Glutamiltransferase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA