Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Plant ; 176(3): e14384, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38859697

RESUMO

The present study aims to explore the potential of a plasma-membrane localized PIP2-type aquaporin protein sourced from the halophyte Salicornia brachiata to alleviate salinity and water deficit stress tolerance in a model plant through transgenic intervention. Transgenic plants overexpressing SbPIP2 gene showed improved physio-biochemical parameters like increased osmolytes (proline, total sugar, and amino acids), antioxidants (polyphenols), pigments and membrane stability under salinity and drought stresses compared to control plants [wild type (WT) and vector control (VC) plants]. Multivariate statistical analysis showed that, under water and salinity stresses, osmolytes, antioxidants and pigments were correlated with SbPIP2-overexpressing (SbPIP2-OE) plants treated with salinity and water deficit stress, suggesting their involvement in stress tolerance. As aquaporins are also involved in CO2 transport, SbPIP2-OE plants showed enhanced photosynthesis performance than wild type upon salinity and drought stresses. Photosynthetic gas exchange (net CO2 assimilation rate, PSII efficiency, ETR, and non-photochemical quenching) were significantly higher in SbPIP2-OE plants compared to control plants (wild type and vector control plants) under both unstressed and stressed conditions. The higher quantum yield for reduction of end electron acceptors at the PSI acceptor side [Φ( R0 )] in SbPIP2-OE plants compared to control plants under abiotic stresses indicates a continued PSI functioning, leading to retained electron transport rate, higher carbon assimilation, and less ROS-mediated injuries. In conclusion, the SbPIP2 gene functionally validated in the present study could be a potential candidate for engineering abiotic stress resilience in important crops.


Assuntos
Secas , Nicotiana , Fotossíntese , Proteínas de Plantas , Plantas Geneticamente Modificadas , Estresse Fisiológico , Fotossíntese/genética , Nicotiana/genética , Nicotiana/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Chenopodiaceae/genética , Chenopodiaceae/fisiologia , Chenopodiaceae/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Salinidade , Regulação da Expressão Gênica de Plantas , Antioxidantes/metabolismo
2.
Gene ; 786: 145597, 2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-33766708

RESUMO

We hereby report in planta function characterization of a novel galactosyl transferase-like (SbGalT) gene from Salicornia brachiata for enhanced abiotic stress tolerance. The SbGalT gene had an open reading frame of 1563 bp. The ectopic expression of SbGalT gene in tobacco improved the seed germination, seedling growth, biomass accumulation and potassium/sodium ratio under salt and osmotic stress. The SbGalT over-expression delayed stress-induced senescence, pigment break-down and ion induced cytotoxicity in tobacco. Higher contents of organic solutes and potassium under stress maintained the osmotic homeostasis and relative water content in tobacco. Higher activity of antioxidant enzymes under stress in transgenic tobacco curtailed the accumulation of reactive oxygen species (ROS) and maintained the membrane integrity. The chlorophyll a fluorescence transient indicated no effects of the imposed strengths of stress on basal state of photosystem (PS) I in transgenic tobacco over-expressing the SbGalT gene. Due to improved membrane integrity, the transgenic tobacco exhibited improved photosynthesis, stomatal conductance, intercellular CO2, transpiration, maximum quantum yield and operating efficiency of PSII, electron transport, photochemical and non-photochemical quenching. In agreement with photosynthesis, physiological health, tolerance index and growth parameters, transgenic tobacco accumulated higher contents of sugar, starch, amino acid, polyphenol and proline under stress conditions. The multivariate data analysis exhibited significant statistical distinctions among osmotic adjustment, physiological health and growth, and photosynthetic responses in control and SbGalT transgenic tobacco under stress conditions. The results strongly indicated novel SbGalT gene as a potential candidate for developing the smart agriculture.


Assuntos
Chenopodiaceae/enzimologia , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Nicotiana/fisiologia , Chenopodiaceae/genética , Clorofila A , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Fases de Leitura Aberta , Fotossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico , Nicotiana/genética
3.
DNA Cell Biol ; 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32865429

RESUMO

Cytochrome b6f complex is a thylakoid membrane-localized protein and catalyses the transfer of electrons from plastoquinol to plastocyanin in photosynthetic electron transport chain. In the present study, Cytochrome b6 (KaCyt b6) gene from Kappaphycus alvarezii (a red seaweed) was overexpressed in tobacco. A 935 base pair (bp) long KaCyt b6 cDNA contained an open reading frame of 648 bp encoding a protein of 215 amino acids with an expected isoelectric point of 8.67 and a molecular mass of 24.37 kDa. The KaCyt b6 gene was overexpressed in tobacco under control of CaMV35S promoter. The transgenic tobacco had higher electron transfer rate and photosynthetic yield over wild-type and vector control tobacco. The KaCyt b6 tobacco also exhibited significantly higher photosynthetic gas exchange (PN) and improved water use efficiency. The transgenic plants had higher ratio of PN and intercellular CO2. The KaCyt b6 transgenic tobacco showed higher estimates of photosystem II quantum yield, higher activity of the water-splitting complex, PSII photochemistry, and photochemical quenching. The basal quantum yield of nonphotochemical processes in PSII was recorded lower in KaCyt b6 tobacco. Transgenic tobacco contained higher contents of carotenoids and total chlorophyll and also had better ratios of chlorophyll a and b, and carotenoids and total chlorophyll contents hence improved photosynthetic efficiency and production of sugar and starch. The KaCyt b6 transgenic plants performed superior under control and greenhouse conditions. To the best of our knowledge through literature survey, this is the first report on characterization of KaCyt b6 gene from K. alvarezii for enhanced photosynthetic efficiency and growth in tobacco.

4.
Plant Physiol Biochem ; 136: 143-154, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30684843

RESUMO

Water stress severely reduces the production of wheat. Application of seaweed extracts have started to show promise in protecting plants from environmental stresses as they contain several biostimulants. However, the modes of action of these biostimulants are not clear. Here, we investigated the role of Gracilaria dura (GD), a red alga, in conferring stress tolerance to wheat during drought under glasshouse and agro-ecological conditions by integrating molecular studies with physiological and field investigations. GD-sap application conferred drought tolerance (as the biomass increased by up to 57% and crop yield by 70%), via facilitating physiological changes associated to maintaining higher water content. GD-sap application significantly increased ABA accumulation (2.34 and 1.46 fold at 4 and 6 days of drought, respectively) due to enhanced expression of biosynthesis genes. This followed an activation of ABA response genes and physiological processes including reduced stomatal opening, thus reducing water loss. Moreover, GD-sap application enhanced the expression of stress-protective genes specifically under water stress. Treatment with fluridone, an ABA inhibitor, further support the role of ABA in GD-sap mediated drought tolerance in wheat. The findings of this study provide insights into the functional role of GD-sap in improving drought tolerance and show the potential to commercialize GD-sap as a potent biostimulant for sustainable agriculture in regions prone to drought.


Assuntos
Ácido Abscísico/metabolismo , Gracilaria/metabolismo , Extratos Vegetais/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Triticum/efeitos dos fármacos , Desidratação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Estômatos de Plantas/efeitos dos fármacos , Transpiração Vegetal/efeitos dos fármacos , Triticum/metabolismo , Triticum/fisiologia
5.
Mol Biol Rep ; 45(6): 1745-1758, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30159639

RESUMO

Cytochromes are important components of photosynthetic electron transport chain. Here we report on genetic transformation of Cytochrome c6 (UfCyt c6) gene from Ulva fasciata Delile in tobacco for enhanced photosynthesis and growth. UfCyt c6 cDNA had an open reading frame of 330 bp encoding a polypeptide of 109 amino acids with a predicted molecular mass of 11.65 kDa and an isoelectric point of 5.21. UfCyt c6 gene along with a tobacco petE transit peptide sequence under control of CaMV35S promoter was transformed in tobacco through Agrobacterium mediated genetic transformation. Transgenic tobacco grew normal and exhibited enhanced growth as compared to wild type (WT) and vector control (VC) tobacco. Transgenic tobacco had higher contents of photosynthetic pigments and better ratios of photosynthetic pigments. The tobacco expressing UfCyt c6 gene exhibited higher photosynthetic rate and improved water use efficiency. Further activity of the water-splitting complex, photosystem II quantum yield, photochemical quenching, electron transfer rate, and photosynthetic yield were found comparatively higher in transgenic tobacco as compared to WT and VC tobacco. Alternatively basal quantum yield of non-photochemical processes in PSII and non-photochemical quenching were estimated lower in tobacco expressing UfCyt c6 gene. As a result of improved photosynthetic performance the transgenic tobacco had higher contents of sugar and starch, and exhibited comparatively better growth. To the best of our knowledge this is the first report on expression of UfCyt c6 gene from U. fasciata for improved photosynthesis and growth in tobacco.


Assuntos
Citocromos c6/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Clorofila/metabolismo , Citocromos c6/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Oxirredução , Fotossíntese/genética , Complexo de Proteína do Fotossistema II/genética , Proteínas de Plantas/genética , Alga Marinha/metabolismo , Tilacoides/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Transfecção/métodos , Ulva/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA