Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Front Genet ; 15: 1363849, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572415

RESUMO

Introduction: Autism spectrum disorder (ASD) is characterized by aberrations in social interaction and communication associated with repetitive behaviors and interests, with strong clinical heterogeneity. Genetic factors play an important role in ASD, but about 75% of ASD cases have an undetermined genetic risk. Methods: We extensively investigated an ASD cohort made of 102 families from the Middle Eastern population of Qatar. First, we investigated the copy number variations (CNV) contribution using genome-wide SNP arrays. Next, we employed Next Generation Sequencing (NGS) to identify de novo or inherited variants contributing to the ASD etiology and its associated comorbid conditions in families with complete trios (affected child and the parents). Results: Our analysis revealed 16 CNV regions located in genomic regions implicated in ASD. The analysis of the 88 ASD cases identified 41 genes in 39 ASD subjects with de novo (n = 24) or inherited variants (n = 22). We identified three novel de novo variants in new candidate genes for ASD (DTX4, ARMC6, and B3GNT3). Also, we have identified 15 de novo variants in genes that were previously implicated in ASD or related neurodevelopmental disorders (PHF21A, WASF1, TCF20, DEAF1, MED13, CREBBP, KDM6B, SMURF1, ADNP, CACNA1G, MYT1L, KIF13B, GRIA2, CHM, and KCNK9). Additionally, we defined eight novel recessive variants (RYR2, DNAH3, TSPYL2, UPF3B KDM5C, LYST, and WNK3), four of which were X-linked. Conclusion: Despite the ASD multifactorial etiology that hinders ASD genetic risk discovery, the number of identified novel or known putative ASD genetic variants was appreciable. Nevertheless, this study represents the first comprehensive characterization of ASD genetic risk in Qatar's Middle Eastern population.

2.
PLoS One ; 18(8): e0290340, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37594932

RESUMO

Metabolic stress involved in several dysregulation disorders such as type 2 diabetes mellitus (T2DM) results in down regulation of several heat shock proteins (HSPs) including DNAJB3. This down regulation of HSPs is associated with insulin resistance (IR) and interventions which induce the heat shock response (HSR) help to increase the insulin sensitivity. Metabolic stress leads to changes in signaling pathways through increased activation of both c-jun N-terminal kinase-1 (JNK1) and the inhibitor of κB inflammatory kinase (IKKß) which in turn leads to inactivation of insulin receptor substrates 1 and 2 (IRS-1 and IRS-2). DNAJB3 interacts with both JNK1 and IKKß kinases to mitigate metabolic stress. In addition DNAJB3 also activates the PI3K-PKB/AKT pathway through increased phosphorylation of AKT1 and its substrate AS160, a Rab GTPase-activating protein, which results in mobilization of GLUT4 transporter protein and improved glucose uptake. We show through pull down that AK T1 is an interacting partner of DNAJB3, further confirmed by isothermal titration calorimetry (ITC) which quantified the avidity of AKT1 for DNAJB3. The binding interface was identified by combining protein modelling with docking of the AKT1-DNAJB3 complex. DNAJB3 is localized in the cytoplasm and ER, where it interacts directly with AKT1 and mobilizes AS160 for glucose transport. Inhibition of AKT1 resulted in loss of GLUT4 translocation activity mediated by DNAJB3 and also abolished the protective effect of DNAJB3 on tunicamycin-induced ER stress. Taken together, our findings provide evidence for a direct protein-protein interaction between DNAJB3 and AKT1 upon which DNAJB3 alleviates ER stress and promotes GLUT4 translocation.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Quinase I-kappa B , Proteínas Proto-Oncogênicas c-akt , Proteínas Serina-Treonina Quinases , Transporte Biológico , Proteínas de Choque Térmico , Proteínas de Choque Térmico HSP40
3.
Ageing Res Rev ; 67: 101313, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33676026

RESUMO

Insulin resistance (IR) underpins a wide range of metabolic disorders including type 2 diabetes (T2D), metabolic syndrome and cardiovascular diseases. IR is characterized by a marked reduction in the magnitude and/or delayed onset of insulin to stimulate glucose disposal. This condition is due to defects in one or several intracellular intermediates of the insulin signaling cascade, ranging from insulin receptor substrate (IRS) inactivation to reduced glucose phosphorylation and oxidation. Genetic predisposition, as well as other precipitating factors such as aging, obesity, and sedentary lifestyles are among the risk factors underlying the pathogenesis of IR and its subsequent progression to T2D. One of the cardinal hallmarks of T2D is the impairment of the heat shock response (HSR). Human and animal studies provided compelling evidence of reduced expression of several components of the HSR (i.e. Heat shock proteins or HSPs) in diabetic samples in a manner that correlates with the degree of IR. Interventions that induce the HSR, irrespective of the means to achieve it, proved their effectiveness in enhancing insulin sensitivity and improving glycemic index. However, most of these studies have been focused on HSP70 family. In this review, we will focus on the novel role of DNAJ/HSP40 cochaperone family in metabolic diseases associated with IR.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Glucose , Humanos , Insulina , Obesidade
4.
Sci Rep ; 10(1): 20482, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33235302

RESUMO

Persistent ER stress, mitochondrial dysfunction and failure of the heat shock response (HSR) are fundamental hallmarks of insulin resistance (IR); one of the early core metabolic aberrations that leads to type 2 diabetes (T2D). The antioxidant α-lipoic acid (ALA) has been shown to attenuate metabolic stress and improve insulin sensitivity in part through activation of the heat shock response (HSR). However, these studies have been focused on a subset of heat shock proteins (HSPs). In the current investigation, we assessed whether ALA has an effect on modulating the expression of DNAJB3/HSP40 cochaperone; a potential therapeutic target with a novel role in mitigating metabolic stress and promoting insulin signaling. Treatment of C2C12 cells with 0.3 mM of ALA triggers a significant increase in the expression of DNAJB3 mRNA and protein. A similar increase in DNAJB3 mRNA was also observed in HepG2 cells. We next investigated the significance of such activation on endoplasmic reticulum (ER) stress and glucose uptake. ALA pre-treatment significantly reduced the expression of ER stress markers namely, GRP78, XBP1, sXBP1 and ATF4 in response to tunicamycin. In functional assays, ALA treatment abrogated significantly the tunicamycin-mediated transcriptional activation of ATF6 while it enhanced the insulin-stimulated glucose uptake and Glut4 translocation. Silencing the expression of DNAJB3 but not HSP72 abolished the protective effect of ALA on tunicamycin-induced ER stress, suggesting thus that DNAJB3 is a key mediator of ALA-alleviated tunicamycin-induced ER stress. Furthermore, the effect of ALA on insulin-stimulated glucose uptake is significantly reduced in C2C12 and HepG2 cells transfected with DNAJB3 siRNA. In summary, our results are supportive of an essential role of DNAJB3 as a molecular target through which ALA alleviates ER stress and improves glucose uptake.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glucose/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Ácido Tióctico/farmacologia , Animais , Biomarcadores/metabolismo , Chaperona BiP do Retículo Endoplasmático , Inativação Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Estresse Oxidativo/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo , Tunicamicina/farmacologia
5.
Sci Rep ; 9(1): 4772, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30886231

RESUMO

Failure of the heat shock response is a key event that leads to insulin resistance and type 2 diabetes. We recently showed that DNAJB3 co-chaperone is downregulated in obese and diabetic patients and that physical exercise restores its normal expression with a significant improvement of the clinical outcomes. In 3T3-L1 adipocytes, DNAJB3 has a role in improving the sensitivity to insulin and glucose uptake. In co-immunoprecipitation assays, DNAJB3 interacts with both JNK1 and IKKß kinases. However, the functional impact of such interaction on their activities has not been investigated. Here, we assessed the effect of DNAJB3 on the respective activity of JNK1 and IKKß in cell-based assays. Using JNK1- and IKKß-dependent luciferase reporters, we show a marked decrease in luciferase activity by DNAJB3 in response to PMA and TNF-α that was consistent with a decrease in the translocation of p65/NF-κB to the nucleus in response to LPS. Furthermore, TNF-α-mediated IL-6 promoter activation and endogenous mRNA expression are significantly abrogated by DNAJB3 both in 3T3-L1 and C2C12 cells. The ability of DNAJB3 to mitigate ER stress and oxidative stress was also investigated and our data show a significant improvement of both forms of stress. Finally, we examined the effect of overexpressing and knocking down the expression of DNAJB3 on glucose uptake in C2C12 as well as the molecular determinants. Accordingly, we provide evidence for a role of DNAJB3 in promoting both basal and insulin-stimulated glucose uptake. Our finding reveals also a novel role of DNAJB3 in eliciting Glut4 translocation to the plasma membrane. These results suggest a physiological role of DNAJB3 in mitigating metabolic stress and improving glucose homeostasis and could therefore represent a novel therapeutic target for type 2 diabetes.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Diabetes Mellitus Tipo 2/patologia , Transportador de Glucose Tipo 4/metabolismo , Glucose/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Células 3T3 , Animais , Linhagem Celular Tumoral , Células HEK293 , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP70/genética , Células Hep G2 , Humanos , Quinase I-kappa B/metabolismo , Camundongos , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Estresse Fisiológico/fisiologia , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
Clin Case Rep ; 2(5): 201-5, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25614812

RESUMO

KEY CLINICAL MESSAGE: We report on a patient with distal trisomy 10q syndrome presenting with a few previously undescribed physical features, as well as, autism spectrum disorder (ASD). We recommend that patients with distal trisomy 10q syndrome should have a behavioral evaluation for ASD for the early institution of therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA