Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
RSC Adv ; 13(44): 31017-31026, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37876650

RESUMO

Metal organic frameworks (MOFs), with structural tunability, high metal content and large surface area have recently attracted the attention of researchers in the field of electrochemistry. In this work, an unprecedented use of multi-walled carbon nanotubes (MWCNTs)/copper-based metal-organic framework (Cu-BTC MOF) composite as an ion-to-electron transducer in a potentiometric sensor is proposed for the determination of orphenadrine citrate. A comparative study was conducted between three proposed glassy carbon electrodes, Cu-MOF, (MWCNTs) and MWCNTs/Cu-MOF composite based sensors, where Cu-MOF, MWCNTs and their composite were utilized as the ion-to-electron transducers. The sensors were developed for accurate and precise determination of orphenadrine citrate in pharmaceutical dosage form, spiked real human plasma and artificial cerebrospinal fluid (ACSF). The sensors employed ß-cyclodextrin as a recognition element with the aid of potassium tetrakis(4-chlorophenyl)borate (KTpCIPB) as a lipophilic ion exchanger. The sensors that were assessed based on the guidelines recommended by IUPAC and demonstrated a linear response within the concentration range of 10-7 M to 10-3 M, 10-6 M to 10-2 M and 10-8 M to 10-2 M for Cu-MOF, MWCNTs and MWCNTs/Cu-MOF composite based sensors, respectively. MWCNTs/Cu-MOF composite based sensor showed superior performance over other sensors regarding lower limit of detection (LOD), wider linearity range and faster response. The sensors demonstrated their potential as effective options for the analysis of orphenadrine citrate in quality control laboratories and in different healthcare activities.

2.
Respir Res ; 24(1): 206, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612691

RESUMO

BACKGROUND: Due to the high risk of COVID-19 patients developing thrombosis in the circulating blood, atherosclerosis, and myocardial infarction, it is necessary to study the lipidome of erythrocytes. Specifically, we examined the pathogenic oxysterols and acylcarnitines in the erythrocyte homogenate of COVID-19 patients. These molecules can damage cells and contribute to the development of these diseases. METHODS: This study included 30 patients and 30 healthy volunteers. The erythrocyte homogenate extract was analyzed using linear ion trap mass spectrometry combined with high-performance liquid chromatography. The concentrations of oxysterols and acylcarnitines in erythrocyte homogenates of healthy individuals and COVID-19 patients were measured. Elevated levels of toxic biomarkers in red blood cells could initiate oxidative stress, leading to a process known as Eryptosis. RESULTS: In COVID-19 patients, the levels of five oxysterols and six acylcarnitines in erythrocyte homogenates were significantly higher than those in healthy individuals, with a p-value of less than 0.05. The mean total concentration of oxysterols in the red blood cells of COVID-19 patients was 23.36 ± 13.47 µg/mL, while in healthy volunteers, the mean total concentration was 4.92 ± 1.61 µg/mL. The 7-ketocholesterol and 4-cholestenone levels were five and ten times higher, respectively, in COVID-19 patients than in healthy individuals. The concentration of acylcarnitines in the red blood cell homogenate of COVID-19 patients was 2 to 4 times higher than that of healthy volunteers on average. This finding suggests that these toxic biomarkers may cause the red blood cell death seen in COVID-19 patients. CONCLUSIONS: The abnormally high levels of oxysterols and acylcarnitines found in the erythrocytes of COVID-19 patients were associated with the severity of the cases, complications, and the substantial risk of thrombosis. The concentration of oxysterols in the erythrocyte homogenate could serve as a diagnostic biomarker for COVID-19 case severity.


Assuntos
COVID-19 , Oxisteróis , Humanos , Eritrócitos , Biomarcadores , Cromatografia Gasosa-Espectrometria de Massas
3.
Biomedicines ; 11(5)2023 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-37239113

RESUMO

The repurposing of drugs is one of the most competent strategies for discovering new antimicrobial agents. Vildagliptin is a dipeptidyl peptidase-4 inhibitor (DPI-4) that is used effectively in combination with metformin to control blood glucose levels in diabetic patients. This study was designed to evaluate the anti-virulence activities of this combination against one of the most clinically important pathogens, Pseudomonas aeruginosa. The current findings show a significant ability of the vildagliptin-metformin combination to diminish biofilm formation, bacterial motility, and the production of virulent extracellular enzymes and pyocyanin pigment. Furthermore, this drug combination significantly increased the susceptibility of P. aeruginosa to oxidative stress, indicating immunity enhancement in the eradication of bacterial cells. In compliance with the in vitro findings, the histopathological photomicrographs of mice showed a considerable protective effect of the metformin-vildagliptin combination against P. aeruginosa, revealing relief of inflammation due to P. aeruginosa-induced pathogenesis. P. aeruginosa mainly employs quorum sensing (QS) systems to control the production of its huge arsenal of virulence factors. The anti-virulence activities of the metformin-vildagliptin combination can be interrupted by the anti-QS activities of both metformin and vildagliptin, as both exhibited a considerable affinity to QS receptors. Additionally, the metformin-vildagliptin combination significantly downregulated the expression of the main three QS-encoding genes in P. aeruginosa. These findings show the significant anti-virulence activities of metformin-vildagliptin at very low concentrations (10, 1.25 mg/mL, respectively) compared to the concentrations (850, 50 mg/mL, respectively) used to control diabetes.

4.
J Biomol Struct Dyn ; 41(24): 15243-15261, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36914238

RESUMO

All the previously reported phenylpyrazoles as carbonic anhydrase inhibitors (CAIs) were found to have small sizes and high levels of flexibility, and hence showed low selectivity profiles toward a particular isoform of CA. Herein, we report the development of a more rigid ring system bearing a sulfonamide hydrophilic head and a lipophilic tail to develop novel molecules that are suggested to have a better selectivity toward a special CA isoform. Accordingly, three novel sets of pyrano[2,3-c]pyrazoles attached with sulfonamide head and aryl hydrophobic tail were synthesized to enhance the selectivity toward a specific isoform of human carbonic anhydrases (hCAs). The impact of both attachments on the potency and selectivity has been extensively discussed in terms of in vitro cytotoxicity evaluation under hypoxic conditions, structure-activity relationship and carbonic anhydrase enzyme assay. All of the new candidates displayed good cytotoxic activities against breast and colorectal carcinomas. Results of the carbonic anhydrase enzyme assay demonstrated the preferential of compounds 22, 24 and 27 to inhibit the isoform IX of hCAs selectively. Wound-healing assay has also been performed and revealed the potential of 27 to decrease the wound closure percentage in MCF-7 cells. Molecular docking and molecular orbital analysis have finally been conducted. Results indicate the potential binding interactions of 24 and 27 with several crucial amino acids of the hCA IX.Communicated by Ramaswamy H. Sarma.


Assuntos
Anidrases Carbônicas , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Anidrase Carbônica IX/química , Relação Estrutura-Atividade , Sulfonamidas/química , Isoformas de Proteínas/metabolismo , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química
5.
Microorganisms ; 10(12)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36557708

RESUMO

Bacteria communicate with each other using quorum sensing (QS) which works in an inducer/receptor manner. QS plays the main role in orchestrating diverse bacterial virulence factors. Pseudomonas aeruginosa is one of the most clinically important bacterial pathogens that can cause infection in almost all body tissues. Besides its efficient capability to develop resistance to different antibiotics, P. aeruginosa acquires a huge arsenal of virulence factors that are controlled mainly by QS. Challenging QS with FDA-approved drugs and natural products was proposed as a promising approach to mitigate bacterial virulence enabling the host immunity to complete the eradication of bacterial infection. The present study aims to evaluate the dipeptidase inhibitor-4 inhibitor hypoglycemic linagliptin anti-QS and anti-virulence activities against P. aeruginosa in vitro, in vivo, and in silico. The current results revealed the significant ability to diminish the production of protease and pyocyanin, motility, and biofilm formation in P. aeruginosa. Furthermore, the histopathological examination of liver and kidney tissues of mice injected with linagliptin-treated bacteria showed an obvious reduction of pathogenesis. Linagliptin downregulation to QS-encoding genes, besides the virtual ability to interact with QS receptors, indicates its anti-QS activities. In conclusion, linagliptin is a promising anti-virulence and anti-QS candidate that can be used solely or in combination with traditional antimicrobial agents in the treatment of P. aeruginosa aggressive infections.

6.
Sci Rep ; 12(1): 15235, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36075939

RESUMO

Resveratrol (RSV), a non-flavonoid stilbene polyphenol, possesses anti-carcinogenic activities against all the major stages of cancer. Zein nanoparticles (ZN NPs) have been utilized successfully in delivery of variant therapeuticals by virtue of their histocompatible nature. The goal of this work was to comparatively explore the antiproliferative, pro-apoptotic and oxidative stress potentials of RSV-ZN NPs versus RSV against human colorectal carcinoma HCT-116 cells. ZN-RSV NPs were developed and assayed for particle size analysis and RSV diffusion. The selected formula obtained 137.6 ± 8.3 nm as mean particle size, 29.4 ± 1.8 mV zeta potential, 92.3 ± 3.6% encapsulation efficiency. IC50 of the selected formula was significantly lower against HCT-116 cells versus Caco-2 cells. Also, significantly enhanced cellular uptake was generated from RSV-ZN NPs versus free RSV. Enhanced apoptosis was concluded due to increased percentage cells in G2-M and pre-G1 phases. The pro-apoptotic potential was explained by caspase-3 and cleaved caspase-3 increased mRNA expression in addition to NF-κB and miRNA125b decreased expression. Biochemically, ZN-RSV NPs induced oxidative stress as demonstrated by enhanced reactive oxygen species (ROS) generation and endothelial nitric oxide synthase (eNOS) isoenzyme increased levels. Conclusively, ZN-RSV NPs obtained cell cycle inhibition supported with augmented cytotoxicity, uptake and oxidative stress markers levels in HCT-116 tumor cells in comparison with free RSV. These results indicated intensified chemopreventive profile of RSV due to effective delivery utilizing ZN nano-dispersion against colorectal carcinoma HCT-116 cells.


Assuntos
Neoplasias Colorretais , Nanopartículas , Zeína , Apoptose , Células CACO-2 , Caspase 3/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Células HCT116 , Humanos , Oxidantes/farmacologia , Resveratrol/farmacologia , Zeína/farmacologia
7.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-35890126

RESUMO

The introduction of selective COX-2 inhibitors (so-called 'coxibs') has demonstrated tremendous commercial success due to their claimed lower potential of serious gastrointestinal adverse effects than traditional NSAIDs. However, following the repeated questioning on safety concerns, the coxibs 'controversial me-too' saga increased substantially, inferring to the risk of cardiovascular complications, subsequently leading to the voluntary withdrawal of coxibs (e.g., rofecoxib and valdecoxib) from the market. For instance, the makers (Pfizer and Merck) had to allegedly settle individual claims of cardiovascular hazards from celecoxib and valdecoxib. Undoubtedly, the lessons drawn from this saga revealed the flaws in drug surveillance and regulation, and taught science to pursue a more integrated translational approach for data acquisition and interpretation, prompting science-based strategies of risk avoidance in order to sustain the value of such drugs, rather than their withdrawal. Looking forward, coxibs are now being studied for repurposing, given their possible implications in the management of a myriad of diseases, including cancer, epilepsy, psychiatric disorders, obesity, Alzheimer's disease, and so on. This article briefly summarizes the development of COX-2 inhibitors to their market impression, followed by the controversy related to their toxicity. In addition, the events recollected in hindsight (the past lessons), the optimistic step towards drug repurposing (the present), and the potential for forthcoming success (the future) are also discussed.

8.
Microorganisms ; 10(5)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35630488

RESUMO

The development of bacterial resistance is an insistent global health care issue, especially in light of the dwindled supply of new antimicrobial agents. This mandates the development of new innovative approaches to overcome the resistance development obstacle. Mitigation of bacterial virulence is an interesting approach that offers multiple advantages. Employing safe chemicals or drugs to mitigate bacterial virulence is an additive advantage. In the current study, the in vitro antivirulence activities of citrate were evaluated. Significantly, sodium citrate inhibited bacterial biofilm formation at sub-MIC concentrations. Furthermore, sodium citrate decreased the production of virulence factors protease and pyocyanin and diminished bacterial motility. Quorum sensing (QS) is the communicative system that bacterial cells utilize to communicate with each other and regulate the virulence of the host cells. In the present study, citrate in silico blocked the Pseudomonas QS receptors and downregulated the expression of QS-encoding genes. In conclusion, sodium citrate showed a significant ability to diminish bacterial virulence in vitro and interfered with QS; it could serve as a safe adjuvant to traditional antibiotic treatment for aggressive resistant bacterial infections such as Pseudomonas aeruginosa infections.

9.
Biomedicines ; 10(5)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35625906

RESUMO

The development of bacterial resistance to traditional antibiotics constitutes an emerging public health issue. Promising approaches have been innovated to conquer bacterial resistance, and targeting bacterial virulence is one of these approaches. Bacterial virulence mitigation offers several merits, as antivirulence agents do not affect the growth of bacteria and hence do not induce bacteria to develop resistance. In this direction, numerous drugs have been repurposed as antivirulence agents prior to their clinical use alone or in combination with traditional antibiotics. Quorum sensing (QS) plays a key role in controlling bacterial virulence. In the current study, dipeptidase inhibitor-4 (DPI-4) antidiabetic gliptins were screened for their antivirulence and anti-quorum sensing (anti-QS) activities against Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus. Upon assessing their antibiofilm activities, the ten tested gliptins significantly diminished biofilm formation. In particular, sitagliptin exhibited the most efficient antibiofilm activity, so it was chosen as a representative of all gliptins to further investigate its antivirulence activity. Sitagliptin significantly protected mice from P. aeruginosa and S. aureus pathogenesis. Furthermore, sitagliptin downregulated QS-encoding genes in P. aeruginosa and S. aureus. To test the anti-QS activities of gliptins, a detailed molecular docking study was conducted to evaluate the gliptins' binding affinities to P. aeruginosa and S. aureus QS receptors, which helped explain the anti-QS activities of gliptins, particularly sitagliptin and omarigliptin. In conclusion, this study evaluates the possible antivirulence and anti-QS activities of gliptins that could be promising novel candidates for the treatment of aggressive Gram-negative or -positive bacterial infections either alone or as adjuvants to other antibiotics.

10.
Pharmaceuticals (Basel) ; 15(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35455431

RESUMO

The combination of lopinavir/ritonavir remains one of the first-line therapies for the initial antiretroviral regimen in pediatric HIV-infected children. However, the implementation of this recommendation has faced many challenges due to cold-chain requirements, high alcohol content, and unpalatability for ritonavir-boosted lopinavir syrup. In addition, the administration of crushed tablets has shown a detriment for the oral bioavailability of both drugs. Therefore, there is a clinical need to develop safer and better formulations adapted to children's needs. This work has demonstrated, for the first time, the feasibility of using direct powder extrusion 3D printing to manufacture personalized pediatric HIV dosage forms based on 6 mm spherical tablets. H-bonding between drugs and excipients (hydroxypropyl methylcellulose and polyethylene glycol) resulted in the formation of amorphous solid dispersions with a zero-order sustained release profile, opposite to the commercially available formulation Kaletra, which exhibited marked drug precipitation at the intestinal pH.

11.
Acta Pharm ; 72(2): 259-274, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36651507

RESUMO

The novelty of this work is the simultaneous analysis of sulbactam (SUL), ampicillin (AMP), and paracetamol (PARA) in human urine samples, using the environmentally benign RP-HPLC method. A C18 column was used in chromatographic separation using potassium dihydrogen phosphate (10 mmol L-1, pH 5)/ethanol (90 %, V/V) as the mobile phase; flow rate was 1.00 mL min-1. UV detection at 220 nm was used for quantification. The proposed method showed good linearity in the concentration ranges of 2.20-250.00 µg mL-1 for SUL, 2.50-250.00 µg mL-1 for PARA, and 14.50-250.00 µg mL-1 for AMP. Direct injection of urine samples with no prior extraction was performed. This method was found successful in moving towards greener studies of drugs' urinary excretion, by decreasing hazardous solvent consumption and waste. Moreover, the method was applied to investigate the urinary excretion of the drugs and possible interaction between ampicillin and paracetamol.


Assuntos
Acetaminofen , Sulbactam , Humanos , Sulbactam/análise , Ampicilina/análise , Cromatografia Líquida de Alta Pressão/métodos
12.
Microorganisms ; 9(11)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34835458

RESUMO

Serratia marcescens is an opportunistic pathogen that causes diverse nosocomial infections. S. marcescens has developed considerable resistance to different antibiotics and is equipped with an armory of virulence factors. These virulence factors are regulated in S. marcescens by an intercellular communication system termed quorum sensing (QS). Targeting bacterial virulence and QS is an interesting approach to mitigating bacterial pathogenesis and overcoming the development of resistance to antimicrobials. In this study, we aimed to evaluate the anti-virulence activities of secnidazole on a clinical isolate of S. marcescens. The effects of secnidazole at sub-inhibitory concentrations (sub-MICs) on virulence factors, swarming motility, biofilm formation, proteases, hemolysin activity, and prodigiosin production were evaluated in vitro. Secnidazole's protective activity against S. marcescens pathogenesis was assessed in vivo in mice. Furthermore, a molecular docking study was conducted to evaluate the binding ability of secnidazole to the S. marcescens SmaR QS receptor. Our findings showed that secnidazole at sub-MICs significantly reduced S. marcescens virulence factor production in vitro and diminished its pathogenesis in mice. The insilico docking study revealed a great ability of secnidazole to competitively hinder the binding of the autoinducer to the SmaR QS receptor. In conclusion, secnidazole is a promising anti-virulence agent that may be used to control infections caused by S. marcescens.

13.
Molecules ; 26(19)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34641526

RESUMO

A new series of benzotriazole moiety bearing substituted imidazol-2-thiones at N1 has been designed, synthesized and evaluated for in vitro anticancer activity against the different cancer cell lines MCF-7(breast cancer), HL-60 (Human promyelocytic leukemia), and HCT-116 (colon cancer). Most of the benzotriazole analogues exhibited promising antiproliferative activity against tested cancer cell lines. Among all the synthesized compounds, BI9 showed potent activity against the cancer cell lines such as MCF-7, HL-60 and HCT-116 with IC50 3.57, 0.40 and 2.63 µM, respectively. Compound BI9 was taken up for elaborate biological studies and the HL-60 cells in the cell cycle were arrested in G2/M phase. Compound BI9 showed remarkable inhibition of tubulin polymerization with the colchicine binding site of tubulin. In addition, compound BI9 promoted apoptosis by regulating the expression of pro-apoptotic protein BAX and anti-apoptotic proteins Bcl-2. These results provide guidance for further rational development of potent tubulin polymerization inhibitors for the treatment of cancer.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Tionas/química , Triazóis/química , Triazóis/farmacologia , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Colchicina/metabolismo , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Células HL-60 , Células Endoteliais da Veia Umbilical Humana , Humanos , Células MCF-7 , Triazóis/síntese química , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacologia
14.
Onco Targets Ther ; 14: 3849-3860, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194230

RESUMO

BACKGROUND: Pancreatic cancer is one of the most serious and lethal human cancers with a snowballing incidence around the world. The natural product celastrol has also been widely documented as a potent anti-inflammatory, anti-angiogenic, and anti-oxidant. PURPOSE: To elucidate the antitumor effect of celastrol on pancreatic cancer cells and its modulatory role on whole genome expression. METHODS: The antitumor activity of celastrol on a panel of pancreatic cancer cells has been evaluated by Sulforhodamine B assay. Caspase 3/7 and histone-associated DNA fragments assays were done for apoptosis measurement. Additionally, prostaglandin (PGE2) inhibition was evaluated. Moreover, a microarray gene expression profiling was carried out to detect possible key players that modulate the antitumor effects of celastrol on cells of pancreatic cancer. RESULTS: Our findings indicated that celastrol suppresses the cellular growth of pancreatic cancer cells, induces apoptosis, and inhibits PGE2 production. Celastrol modulated many signaling genes and its cytotoxic effect was mainly mediated via over-expression of ATF3 and DDIT3, and down-expression of RRM2 and MCM4. CONCLUSION: The current study aims to be a starting point to generate a hypothesis on the most significant regulatory genes and for a full dissection of the celastrol possible effects on each single gene to prevent the pancreatic cancer growth.

15.
Microorganisms ; 9(5)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070043

RESUMO

Serratia marcescens is an opportunistic nosocomial pathogen and causes wound and burn infections. It shows high resistance to antibiotics and its pathogenicity is mediated by an arsenal of virulence factors. Another therapeutic option to such infections is targeting quorum sensing (QS), which controls the expression of different S. marcescens virulence factors. Prevention of QS can deprive S. marcescens from its bacterial virulence without applying stress on the bacterial growth and facilitates the eradication of the bacteria by immunity. The objective of the current study is to explore the antimicrobial and antivirulence activities of xylitol against S. marcescens. Xylitol could inhibit the growth of S. marcescens. Sub-inhibitory concentrations of xylitol could inhibit biofilm formation, reduce prodigiosin production, and completely block protease activity. Moreover, xylitol decreased swimming motility, swarming motility and increased the sensitivity to hydrogen peroxide. The expression of rsmA, pigP, flhC, flhD fimA, fimC, shlA bsmB, and rssB genes that regulate virulence factor production was significantly downregulated by xylitol. In silico study showed that xylitol could bind with the SmaR receptor by hydrophobic interaction and hydrogen bonding, and interfere with the binding of the natural ligand with SmaR receptor. An in vivo mice survival test confirmed the ability of xylitol to protect mice against the virulence of S. marcescens. In conclusion, xylitol is a growth and virulence inhibitor in S. marcescens and can be employed for the treatment of S. marcescens wound and burn infections.

16.
R Soc Open Sci ; 7(7): 200635, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32874656

RESUMO

A parenteral medical combination containing vaborbactam and meropenem is used mainly to treat complicated urinary tract infections. A novel ultra-performance liquid chromatography tandem mass spectrometric method was developed for the sensitive determination of both compounds in human plasma. Sample preparation was performed by precipitation technique. The chromatographic separation was accomplished using the Acquity C18-BEH column, 0.01 M ammonium formate: acetonitrile (47 : 53, v/v) as a mobile phase with a flow rate of 0.2 ml min-1. Analytes were monitored by applying multiple reaction monitoring. The bioanalytical validation criteria were conducted following the Food and Drug Administration recommendations. The method was linear within range 0.5 to 50 µg ml-1, for both drugs. The intra-day and inter-day precision, as coefficient variation (% CV) and the accuracy, as % bias did not exceed 15% for both drugs. The percentage recovery of targeted analytes was not less than 77%, calculated at three quality control levels. The proposed method showed a suitable lower level of quantification value of 0.50 µg ml-1 for both analytes, which is far lower than the expected C max, which permits the use of this method for pharmacokinetic studies. The proposed method proved to be useful for the evaluation of this combination in both human plasma and pharmaceutical formulation.

17.
Pharmaceuticals (Basel) ; 13(9)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32961906

RESUMO

The membrane-bound human carbonic anhydrase (hCA) IX is widely recognized as a marker of tumor hypoxia and a prognostic factor within several human cancers. Being undetected in most normal tissues, hCA-IX implies the pharmacotherapeutic advent of reduced off-target adverse effects. We assessed the potential anticancer activity of bumetanide-based analogues to inhibit the hCA-IX enzymatic activity and cell proliferation of two solid cancer cell lines, namely kidney carcinoma (A-498) and bladder squamous cell carcinoma (SCaBER). Bumetanide analogues efficiently inhibit the target hCA-IX in low nanomolar activity (IC50 = 4.4-23.7 nM) and have an excellent selectivity profile (SI = 14.5-804) relative to the ubiquitous hCA-II isoform. Additionally, molecular docking studies provided insights into the compounds' structure-activity relationship and preferential binding of small-sized as well as selective bulky ligands towards the hCA-IX pocket. In particular, 2,4-dihydro-1,2,4-triazole-3-thione derivative 9c displayed pronounced hCA-IX inhibitory activity and impressive antiproliferative activity on oncogenic A-498 kidney carcinoma cells and is being considered as a promising anticancer candidate. Future studies will aim to optimize this compound to fine-tune its anticancer activity as well as explore its potential through in-vivo preclinical studies.

18.
Artigo em Inglês | MEDLINE | ID: mdl-32949926

RESUMO

A sensitive liquid chromatography-tandem mass spectrometry (LC-MS) method was developed for the screening of five ß-blockers (BBs), including atenolol, metoprolol, bisoprolol, propranolol, and betaxolol, in rabbit plasma. An inhouse prepared hydrazonoyl chloride compound (UOSA54) and dansyl chloride (DNS) were successfully coupled with BBs via the amino functional group and analyzed by LC-MS/MS. The excess hydrazonoyl chloride was characterized by a negligible ionization suppression at the electrospray-ionization (ESI) source, which enables the analysis of BBs at a low concentration level. The relative ESI-MS response of derivatized to underivatized BBs was enhanced 2.3 to 3.7-fold. The developed method could be applied for screening of BBs in samples by searching the most abundant MS product ions, including m/z 169 and 211, in addition to the precursor ion and the cleavage of ether moiety. The method could be applied for trace analysis and screening of BBs abuse. The use of UOSA54 was adventitious over dansylated derivatives because of minimal reaction by-products and the negligible ionization suppression effect. The extraction efficiency of BBs from rabbit plasma was improved to reach 77.5-93.9% using tert-butylamine and Chromabond® C18ec-100 mg column. The optimal reaction conditions were optimized and validated. The linear range of analyzed BBs in rabbit plasma was within the range of 0.1 to 25.0 ng/mL, while the limit of quantification (LO Q) was ranged from 0.10 to 0.25 ng/mL.


Assuntos
Antagonistas Adrenérgicos beta/sangue , Cromatografia Líquida/métodos , Compostos de Dansil/química , Espectrometria de Massas em Tandem/métodos , Antagonistas Adrenérgicos beta/química , Animais , Limite de Detecção , Modelos Lineares , Coelhos , Reprodutibilidade dos Testes
19.
Saudi Med J ; 41(8): 849-857, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32789426

RESUMO

OBJECTIVES: To assess community pharmacists' knowledge and practices regarding screening risk factors and providing safety information about the use of non- steroidal anti-in ammatory drugs (NSAIDs) to patients. METHODS: Cross-sectional and a self-administered questionnaire-based study was conducted over a 4-month period (May-August 2019) with selected community pharmacies in Jeddah, Saudi Arabia. The questionnaire composed of demographic data and the pharmacist's role in supplying NSAIDs. RESULTS: The majority of participating community pharmacists dispense NSAIDs. However, many did not apply relevantly good communication skills such as seeking information about concomitant drugs (42.5%) or providing advice on managing any adverse side effects of taking NSAIDs (39.1%). Most of the community pharmacists also did not provide relevantly good communication about risk factors. The most common screening risk factors mentioned were a history of pregnancy and breastfeeding (84.2%) followed by being at an older age (74.5%) or a history of a gastrointestinal ulcer (71.5%). CONCLUSION: Community pharmacists in Saudi Arabia need to appropriately screen their patients for adverse drug reactions and the ectively communicate the risks of using NSAIDs. The Saudi Regulatory Authority could endorse several approaches to apply a good strategy for improving the dispensing practices in community pharmacies, communication and awareness of risk factors especially in high-risk patients who are taking NSAIDs.


Assuntos
Anti-Inflamatórios não Esteroides/efeitos adversos , Competência Clínica , Aconselhamento , Serviços de Informação sobre Medicamentos , Conhecimentos, Atitudes e Prática em Saúde , Farmacêuticos , Papel Profissional , Adulto , Fatores Etários , Aleitamento Materno , Comunicação , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Úlcera Péptica , Gravidez , Fatores de Risco , Arábia Saudita , Inquéritos e Questionários , Adulto Jovem
20.
Molecules ; 25(14)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650556

RESUMO

Two sets of diphenyl ether derivatives incorporating five-membered 1,3,4-oxadiazoles, and their open-chain aryl hydrazone analogs were synthesized in good yields. Most of the synthesized compounds showed promising in vitro antimycobacterial activity against Mycobacterium tuberculosis H37Rv. Three diphenyl ether derivatives, namely hydrazide 3, oxadiazole 4 and naphthylarylidene 8g exhibited pronounced activity with minimum inhibitory concentrations (MICs) of 0.61, 0.86 and 0.99 µg/mL, respectively compared to triclosan (10 µg/mL) and isoniazid (INH) (0.2 µg/mL). Compounds 3, 4, and 8g showed the InhA reductase enzyme inhibition with higher IC50 values (3.28-4.23 µM) in comparison to triclosan (1.10 µM). Correlation between calculated physicochemical parameters and biological activity has been discussed which justifies a strong correlation with respect to the inhibition of InhA reductase enzyme. Molecular modeling and drug-likeness studies showed good agreement with the obtained biological evaluation. The structural and experimental information concerning these three InhA inhibitors will likely contribute to the lead optimization of new antibiotics for M. tuberculosis.


Assuntos
Antituberculosos , Proteínas de Bactérias , Inibidores Enzimáticos , Mycobacterium tuberculosis/enzimologia , Oxirredutases , Triclosan/análogos & derivados , Animais , Antituberculosos/síntese química , Antituberculosos/química , Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Chlorocebus aethiops , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Oxirredutases/antagonistas & inibidores , Oxirredutases/metabolismo , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA