Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Alzheimers Dement (Amst) ; 15(4): e12495, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034851

RESUMO

A rapidly aging world population is fueling a concomitant increase in Alzheimer's disease (AD) and related dementias (ADRD). Scientific inquiry, however, has largely focused on White populations in Australia, the European Union, and North America. As such, there is an incomplete understanding of AD in other populations. In this perspective, we describe research efforts and challenges of cohort studies from three regions of the world: Central America, East Africa, and East Asia. These cohorts are engaging with the Davos Alzheimer's Collaborative (DAC), a global partnership that brings together cohorts from around the world to advance understanding of AD. Each cohort is poised to leverage the widespread use of mobile devices to integrate digital phenotyping into current methodologies and mitigate the lack of representativeness in AD research of racial and ethnic minorities across the globe. In addition to methods that these three cohorts are already using, DAC has developed a digital phenotyping protocol that can collect ADRD-related data remotely via smartphone and/or in clinic via a tablet to generate a common data elements digital dataset that can be harmonized with additional clinical and molecular data being collected at each cohort site and when combined across cohorts and made accessible can provide a global data resource that is more racially/ethnically represented of the world population.

2.
J Supercomput ; 78(5): 7078-7105, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34754141

RESUMO

The COronaVIrus Disease 2019 (COVID-19) pandemic is unfortunately highly transmissible across the people. In order to detect and track the suspected COVID-19 infected people and consequently limit the pandemic spread, this paper entails a framework integrating the machine learning (ML), cloud, fog, and Internet of Things (IoT) technologies to propose a novel smart COVID-19 disease monitoring and prognosis system. The proposal leverages the IoT devices that collect streaming data from both medical (e.g., X-ray machine, lung ultrasound machine, etc.) and non-medical (e.g., bracelet, smartwatch, etc.) devices. Moreover, the proposed hybrid fog-cloud framework provides two kinds of federated ML as a service (federated MLaaS); (i) the distributed batch MLaaS that is implemented on the cloud environment for a long-term decision-making, and (ii) the distributed stream MLaaS, which is installed into a hybrid fog-cloud environment for a short-term decision-making. The stream MLaaS uses a shared federated prediction model stored into the cloud, whereas the real-time symptom data processing and COVID-19 prediction are done into the fog. The federated ML models are determined after evaluating a set of both batch and stream ML algorithms from the Python's libraries. The evaluation considers both the quantitative (i.e., performance in terms of accuracy, precision, root mean squared error, and F1 score) and qualitative (i.e., quality of service in terms of server latency, response time, and network latency) metrics to assess these algorithms. This evaluation shows that the stream ML algorithms have the potential to be integrated into the COVID-19 prognosis allowing the early predictions of the suspected COVID-19 cases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA