Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
PLoS Pathog ; 19(8): e1011395, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37578959

RESUMO

Viruses with single-stranded, positive-sense (+) RNA genomes incur high numbers of errors during replication, thereby creating diversified genome populations from which new, better adapted viral variants can emerge. However, a definitive error rate is known for a relatively few (+) RNA plant viruses, due to challenges to account for perturbations caused by natural selection and/or experimental set-ups. To address these challenges, we developed a new approach that exclusively profiled errors in the (-)-strand replication intermediates of turnip crinkle virus (TCV), in singly infected cells. A series of controls and safeguards were devised to ensure errors inherent to the experimental process were accounted for. This approach permitted the estimation of a TCV error rate of 8.47 X 10-5 substitution per nucleotide site per cell infection. Importantly, the characteristic error distribution pattern among the 50 copies of 2,363-base-pair cDNA fragments predicted that nearly all TCV (-) strands were products of one replication cycle per cell. Furthermore, some of the errors probably elevated error frequencies by lowering the fidelity of TCV RNA-dependent RNA polymerase, and/or permitting occasional re-replication of progeny genomes. In summary, by profiling errors in TCV (-)-strand intermediates incurred during replication in single cells, this study provided strong support for a stamping machine mode of replication employed by a (+) RNA virus.


Assuntos
Carmovirus , Vírus de RNA , Carmovirus/genética , RNA Viral/genética , RNA Viral/metabolismo , Taxa de Mutação , Vírus de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Replicação Viral/genética
3.
Sci Rep ; 8(1): 11882, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089777

RESUMO

During the translation process, transfer RNA (tRNA) carries amino acids to ribosomes for protein synthesis. Each codon of mRNA is recognized by a specific tRNA, and enzyme-catalysed modifications to tRNA regulate translation. TtcA is a unique tRNA-thiolating enzyme that requires an iron-sulfur ([Fe-S]) cluster to catalyse thiolation of tRNA. In this study, the physiological functions of a putative ttcA in Pseudomonas aeruginosa, an opportunistic human pathogen that causes serious problems in hospitals, were characterized. A P. aeruginosa ttcA-deleted mutant was constructed, and mutant cells were rendered hypersensitive to oxidative stress, such as hydrogen peroxide (H2O2) treatment. Catalase activity was lower in the ttcA mutant, suggesting that this gene plays a role in protecting against oxidative stress. Moreover, the ttcA mutant demonstrated attenuated virulence in a Drosophila melanogaster host model. Site-directed mutagenesis analysis revealed that the conserved cysteine motifs involved in [Fe-S] cluster ligation were required for TtcA function. Furthermore, ttcA expression increased upon H2O2 exposure, implying that enzyme levels are induced under stress conditions. Overall, the data suggest that P. aeruginosa ttcA plays a critical role in protecting against oxidative stress via catalase activity and is required for successful bacterial infection of the host.


Assuntos
Proteínas de Bactérias/genética , Genes Bacterianos/genética , Peróxido de Hidrogênio/farmacologia , Proteínas Ferro-Enxofre/genética , Estresse Oxidativo/genética , Pseudomonas aeruginosa/genética , RNA de Transferência/genética , Sequência de Aminoácidos , Animais , Catalase/genética , Drosophila melanogaster/microbiologia , Estresse Oxidativo/efeitos dos fármacos , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA