Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 9(1): 106-138, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36545927

RESUMO

Despite the advances in the regeneration/rehabilitation field of damaged tissues, the functional recovery of peripheral nerves (PNs), especially in a long gap injury, is considered a great medical challenge. Recent progress in nanomedicine has provided great hope for PN regeneration through the strategy of controlling cell behavior by metal nanoparticles individually or loaded on scaffolds/conduits. Despite the confirmed toxicity of metal nanoparticles due to long-term accumulation in nontarget tissues, they play a role in the damaged PN regeneration based on the topography modification of scaffolds/conduits, enhancing neurotrophic factor secretion, the ion flow improvement, and the regulation of electrical signals. Determining the fate of neural progenitor cells would be a major achievement in PN regeneration, which seems to be achievable by metal nanoparticles through altering cell vital approaches and controlling their functions. Therefore, in this literature, an attempt was made to provide an overview of the effective activities of metal nanoparticles on the PN regeneration, until the vital clues of the PN regeneration and how they are changed by metal nanoparticles are revealed to the researcher.


Assuntos
Nanopartículas Metálicas , Nervos Periféricos , Nervos Periféricos/fisiologia , Nanopartículas Metálicas/uso terapêutico , Próteses e Implantes , Regeneração Nervosa/fisiologia
2.
ACS Biomater Sci Eng ; 8(8): 3199-3219, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35816626

RESUMO

As bone grafts become more commonly needed by patients and as donors become scarcer, acellularized bone grafts (ABGs) are becoming more popular for restorative purposes. While autogeneic grafts are reliable as a gold standard, allogeneic and xenogeneic ABGs have been shown to be of particular interest due to the limited availability of autogeneic resources and reduced patient well-being in long-term surgeries. Because of the complete similarity of their structures with native bone, excellent mechanical properties, high biocompatibility, and similarities of biological behaviors (osteoinductive and osteoconductive) with local bones, successful outcomes of allogeneic and xenogeneic ABGs in both in vitro and in vivo research have raised hopes of repairing patients' bone injuries in clinical applications. However, clinical trials have been delayed due to a lack of standardized protocols pertaining to acellularization, cell seeding, maintenance, and diversity of ABG evaluation criteria. This study sought to uncover these factors by exploring the bone structures, ossification properties of ABGs, sources, benefits, and challenges of acellularization approaches (physical, chemical, and enzymatic), cell loading, and type of cells used and effects of each of the above items on the regenerative technologies. To gain a perspective on the repair and commercialization of products before implementing new research activities, this study describes the differences between ABGs created by various techniques and methods applied to them. With a comprehensive understanding of ABG behavior, future research focused on treating bone defects could provide a better way to combine the treatment approaches needed to treat bone defects.


Assuntos
Regeneração Óssea , Transplante Ósseo/métodos , Osso e Ossos/patologia , Transplante Heterólogo/normas , Transplante Homólogo/normas , Transplante Ósseo/normas , Osso e Ossos/fisiologia , Osso e Ossos/cirurgia , Humanos , Osteogênese , Transplante Heterólogo/métodos , Transplante Homólogo/métodos
3.
Int J Fertil Steril ; 13(1): 51-56, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30644245

RESUMO

BACKGROUND: Chlorpyrifos (CPF), an organophosphate pesticide, is widely used in farms in order to preserve crops and fruits. Previous studies have shown that CPF exposure might cause chronic toxicity in male genital system. The present study investigated the protective effect of N-Acetyl Cysteine (NAC), a potent antioxidant against testicular toxicity of CPF in male mice. MATERIALS AND METHODS: In this experimental study, 42 adult male mice were divided into seven groups, CPF low (0.5 mg/kg.b.w) and high (5 mg/kg.b.w) doses groups, NAC group (35 mg/kg.b.w), NAC+CPF 0/5 mg/kg.b.w, NAC+CPF 5 mg/kg.b.w, dimethyl sulfoxide (DMSO, 0.75% solution mg/kg.b.w) and control group. All treatment were done intraperitoneally. Treatment was conducted for four consecutive weeks (five days each week). However NAC was injected to NAC+CPF groups five days before initiation of the treatment procedure. One week after the last injection, mice were sacrificed using anesthetic gas to evaluate alterations in testicular histology and sperm parameters. RESULTS: Seminiferous tubules area and diameter were significantly diminished in the group treated with 5 mg/kg CPF (P<0.05). CPF also statistically reduced sperm parameters (count and motility) and damaged sperm morphology) at both doses (P<0.05). However, NAC significantly improved spermatogonia, spermatocytes, spermatid cell counts as well as sperm parameters in mice treated with both CPF concentrations (P<0.05). CONCLUSION: According to our results, NAC may significantly ameliorate CPF-induced damages to spermatogonia, spermatocytes, spermatids cell counts and sperm parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA