Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Hazard Mater ; 461: 132574, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-37748310

RESUMO

Glyphosate is the most widely used herbicide in the world. There is still no complete clarity about the degree of its genotoxicity and mutagenicity. In addition, its effect on bacterial biofilms, the main life form of soil microbial communities, has not been adequately studied. Toxicity and mutagenicity, as well as changes in the bacterial biofilm biomass, physiological activity, and the number of living cells in its composition in the presence of glyphosate were assessed using the Escherichia coli model. To assess damage to cellular components under the action of this pesticide, luminescent whole-cell bacterial lux-biosensors were used. Changes in the level of mutagenesis were studied by the method of rifampicin mutants. High integral toxicity of glyphosate, the average level of increased oxidative stress and protein damage were shown with the help of bacterial biosensors. All the studied concentrations of the pesticide completely or partially suppress the matrix and structure of the E. coli CDC F-50 biofilm formation, as well as the bacterial cells metabolic activity in the biofilm. At the concentrations of 6.7 and 0.67 g/L, glyphosate suppresses mutagenesis, probably due to general suppression of metabolism, and at the concentration of 0.0067 g/L, it enhances mutagenesis by six times compared with the spontaneous level. Suppression of bacterial biofilms formation, toxic effects on microorganisms, and mutagenesis enhancement by glyphosate can lead to negative consequences for natural microbiomes.


Assuntos
Herbicidas , Praguicidas , Escherichia coli/genética , Escherichia coli/metabolismo , Praguicidas/metabolismo , Herbicidas/metabolismo , Bactérias/metabolismo , Mutagênese , Biofilmes , Glifosato
2.
Environ Sci Pollut Res Int ; 30(5): 12695-12713, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36114974

RESUMO

For a better understanding of the dissemination of antibiotic resistance genes (ARGs) in natural microbial communities, it is necessary to study the factors influencing it. There are not enough studies showing the connection of some pollutants with the dissemination of ARGs and especially few works on the effect of polycyclic aromatic compounds (PAHs) on the spread of resistance in microbiocenosis. In this respect, the aim of the study was to determine the effect of bioaccessible PAHs on soil resistome. The toxicity and the content of bioaccessible PAHs and ARGs were studied in 64 samples of soils of different types of land use in the Rostov Region of Russia. In most soils, a close positive correlation was demonstrated between different ARGs and bioaccessible PAHs with different content of rings in the structure. Six of the seven studied ARGs correlated with the content of 2-, 3-, 4-, 5- or 6-ring PAHs. The greatest number of close correlations was found between the content of PAHs and ARGs in the soils of protected areas, for agricultural purposes, and in soils of hospitals. The diverse composition of microbial communities in these soils might greatly facilitate this process. A close correlation between various toxic effects identified with a battery of whole-cell bacterial biosensors and bioaccessible PAHs of various compositions was established. This correlation showed possible mechanisms of PAHs' influence on microorganisms (DNA damage, oxidative stress, etc.), which led to a significant increase in horizontal gene transfer and spread of some ARGs in soil microbial communities. All this information, taken together, suggests that bioaccessible PAHs can enhance the spread of antibiotic resistance genes.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Solo/química , Antibacterianos/farmacologia , Poluentes do Solo/análise , Agricultura , Hidrocarbonetos Policíclicos Aromáticos/análise , Resistência Microbiana a Medicamentos/genética , Microbiologia do Solo , Genes Bacterianos
3.
Environ Sci Pollut Res Int ; 27(35): 43569-43581, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32935217

RESUMO

Environmental objects (surface and groundwater, soil, bottom sediments, wastewater) are reservoirs in which large-scale multidirectional exchange of determinants of antibiotic resistance between clinical strains and natural bacteria takes place. The review discusses the results of studies on antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARG) isolated from environmental objects (water, soil, sewage, permafrost) of the Russian Federation. Despite the relevance of the topic, the number of available publications examining the resistomes of Russian water bodies and soils is small. The most studied environmental objects are surface waters (rivers, lakes), permafrost deposits. Soil resistomes are less studied. Data on ARG and ARB in wastewater are the least covered in publications. In most of the studies, antibiotic resistance of isolated pure bacterial cultures was determined phenotypically. A significant number of publications are devoted to the resistance of natural isolates of Vibrio cholerae, since the lower reaches of the Volga and Don rivers are endemic to cholera. Molecular genetic methods were used in a small number of studies. Geographically, the south of the European part of Russia is the most studied. There are also publications on the distribution of ARG in water bodies of Siberia and the Russian Far East. There are practically no publications on such developed regions of Russia as the center and northwest of the European part of Russia. The territory of the country is very large, anthropogenic and natural factors in its various regions vary significantly; therefore, it seems interesting to combine all available data in one work.


Assuntos
Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Ásia Oriental , Genes Bacterianos , Federação Russa , Sibéria
4.
Microbiologyopen ; 8(9): e00855, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31119875

RESUMO

In this study, we compared the expression of CYP153, sodA, sodC, and recA genes and ROS generation in hydrocarbon-degrading Rhodococcus erythropolis in the presence of cyclohexane, naphthalene, and diesel fuel. The expression of cytochrome P450, sodA (encoding Fe/Mn superoxide dismutase), recA, and superoxide anion radical generation rate increased after the addition of all studied hydrocarbons. The peak of CYP153, sodA, and recA gene expression was registered in the presence of naphthalene. The same substrate upregulated the Cu/Zn superoxide dismutase gene, sodC. Cyclohexane generated the highest level of superoxide anion radical production. Hydrogen peroxide accumulated in the medium enriched with diesel fuel. Taken together, hydrocarbon biotransformation leads to oxidative stress and upregulation of antioxidant enzymes and CYP153 genes, and increases DNA reparation levels in R. erythropolis cells.


Assuntos
Cicloexanos/toxicidade , Gasolina/toxicidade , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Naftalenos/toxicidade , Estresse Oxidativo , Rhodococcus/efeitos dos fármacos , Rhodococcus/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Biotransformação , Cicloexanos/metabolismo , Perfilação da Expressão Gênica , Naftalenos/metabolismo , Espécies Reativas de Oxigênio/análise
5.
Eur J Med Chem ; 93: 349-59, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25707015

RESUMO

New compounds containing both benzofuroxan and benzothiazole scaffolds were synthesized through electrophile/nucleophile combination of nitrobenzofuroxan derivatives and 2-mercapto- or 2-aminobenzothiazole derivatives and their biological effect on the natural strain Vibrio genus and different bacterial lux-biosensors was studied. Among all the compounds synthesized, that obtained from 2-mercaptobenzothiazole and 7-chloro-4,6-dinitrobenzofuroxan was toxic for bacterial cells, and also able to activated the 1st type Quorum Sensing system. The reaction between 7-chloro-4,6-dinitrobenzofuroxan and 2-aminobenzothiazole derivatives gave two products, one bearing the benzofuroxan moiety linked to the exocyclic amino nitrogen, and the second derived from the attack of two molecules of electrophile to both the nitrogen atoms of the benzothiazole reagent. Their relative ratio is modifiable by tuning the reagents ratio and the reaction time.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Benzotiazóis/síntese química , Benzotiazóis/farmacologia , Benzoxazóis/síntese química , Benzoxazóis/farmacologia , Antibacterianos/química , Benzotiazóis/química , Benzoxazóis/química , Técnicas de Química Sintética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Genes Bacterianos/genética , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Vibrio/efeitos dos fármacos , Vibrio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA