Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 602(6): 1147-1174, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38377124

RESUMO

Viscerosensory information travels to the brain via vagal afferents, where it is first integrated within the brainstem nucleus tractus solitarii (nTS), a critical contributor to cardiorespiratory function and site of neuroplasticity. We have shown that decreasing input to the nTS via unilateral vagus nerve transection (vagotomy) induces morphological changes in nTS glia and reduces sighs during hypoxia. The mechanisms behind post-vagotomy changes are not well understood. We hypothesized that chronic vagotomy alters cardiorespiratory responses to vagal afferent stimulation via blunted nTS neuronal activity. Male Sprague-Dawley rats (6 weeks old) underwent right cervical vagotomy caudal to the nodose ganglion, or sham surgery. After 1 week, rats were anaesthetized, ventilated and instrumented to measure mean arterial pressure (MAP), heart rate (HR), and splanchnic sympathetic and phrenic nerve activity (SSNA and PhrNA, respectively). Vagal afferent stimulation (2-50 Hz) decreased cardiorespiratory parameters and increased neuronal Ca2+ measured by in vivo photometry and in vitro slice imaging of nTS GCaMP8m. Vagotomy attenuated both these reflex and neuronal Ca2+ responses compared to shams. Vagotomy also reduced presynaptic Ca2+ responses to stimulation (Cal-520 imaging) in the nTS slice. The decrease in HR, SSNA and PhrNA due to nTS nanoinjection of exogenous glutamate also was tempered following vagotomy. This effect was not restored by blocking excitatory amino acid transporters. However, the blunted responses were mimicked by NMDA, not AMPA, nanoinjection and were associated with reduced NR1 subunits in the nTS. Altogether, these results demonstrate that vagotomy induces multiple changes within the nTS tripartite synapse that influence cardiorespiratory reflex responses to afferent stimulation. KEY POINTS: Multiple mechanisms within the nucleus tractus solitarii (nTS) contribute to functional changes following vagal nerve transection. Vagotomy results in reduced cardiorespiratory reflex responses to vagal afferent stimulation and nTS glutamate nanoinjection. Blunted responses occur via reduced presynaptic Ca2+ activation and attenuated NMDA receptor expression and function, leading to a reduction in nTS neuronal activation. These results provide insight into the control of autonomic and respiratory function, as well as the plasticity that can occur in response to nerve damage and cardiorespiratory disease.


Assuntos
Neurônios , Núcleo Solitário , Ratos , Masculino , Animais , Núcleo Solitário/fisiologia , Ratos Sprague-Dawley , Neurônios/fisiologia , Vagotomia , Nervo Vago/fisiologia , Ácido Glutâmico/farmacologia , Ácido Glutâmico/metabolismo
2.
BMC Cardiovasc Disord ; 22(1): 181, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35439928

RESUMO

BACKGROUND: The influence of cutting the sub-diaphragmatic branch of the vagus nerve on heart rate variability (HRV) and inflammatory reaction to severe hemorrhagic shock has not been determined prior to this study. METHODS: Male Sprague-Dawley rats were divided into four groups of Sham, sub-diaphragmatic vagotomized (Vag), subacute (135 ± 2 min) hemorrhagic shock (SHS), and sub-diaphragmatic vagotomized with SHS (Vag + SHS). Hemodynamic parameters were recorded and HRV calculated during multiple phases in a conscious model of hemorrhagic shock. The expressions of TNF-α and iNOS were measured in the spleen and lung tissues at the conclusion of the protocol. RESULTS: Decreases in blood pressure during blood withdrawal were identical in the SHS and Vag + SHS groups. However, heart rate only decreased in the Nadir-1 phase of the SHS group. HRV indicated increased power in the very-low, low, and high (VLF, LF, and HF) frequency bands during the Nadir-1 phase of the SHS and Vag + SHS groups, albeit the values were higher in the SHS group. In the recovery phase, the HF bands were only lower in the SHS group. After hemorrhagic shock followed by resuscitation, the expression of TNF-α and iNOS increased in the spleen and lung of the SHS group, and the expression of these genes was significantly lower in the Vag + SHS group than in the SHS group. CONCLUSION: Parasympathetic activity increases during the hypotensive phase of hemorrhagic shock, whereas the cardiac vagal tone decreases in the recovery phase. Sub-diapragmatic vagotomy blunts the cardiac vagal tone during hemorrhagic shock, but its effect is reversed in the recovery phase. The vagus nerve plays a role in proinflammatory responses in the lungs and spleen in subacute hemorrhagic shock followed by resuscitation.


Assuntos
Pneumonia , Choque Hemorrágico , Animais , Modelos Animais de Doenças , Feminino , Frequência Cardíaca/fisiologia , Humanos , Masculino , Pneumonia/etiologia , Gravidez , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa , Vagotomia
3.
Int J Crit Illn Inj Sci ; 11(3): 134-141, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34760659

RESUMO

BACKGROUND: As the COVID-19 pandemic continues, determining hospital demands has become a vital priority. Heart rate variability (HRV) has been linked to both the presence of viral infection and its severity. We investigate the possibility of using HRV parameters in comparison to other clinical parameters for predicting the hospital length of stay (LOS) for COVID-19 patients. METHODS: This was a population-based cohort study. Measurements were performed in a specialized hospital for respiratory disease, dedicated to COVID-19. Patients were polymerase chain reaction positive for COVID-19 and on their 1st day of admission. Heart period, respiratory sinus arrhythmia (RSA), low frequency (LF) HRV, and vagal efficiency were calculated from electrocardiogram signals. This study investigated the correlation of HRV, demographic, and laboratory parameters with hospital LOS. RESULTS: Forty-one participants were recruited, with a significant relationship, observed between hospital LOS and some demographic and clinical parameters such as lymphocyte count, age, and oxygen saturation of arterial blood. There was a negative relationship between LF and hospital LOS (r = -0.53, 95% confidence interval: -0.73, -0.24). Higher vagal efficiency predicted shorter hospital LOS in patients younger than 40 years of age (19.27% shorter hospital LOS was associated with a one SD higher value of VE, P = 0.007). CONCLUSION: HRV measurement is a non-invasive, inexpensive, and scalable procedure that produces several metrics, some of which are useful for predicting hospital LOS and managing treatment resources during COVID-19 pandemic.

4.
BMC Cardiovasc Disord ; 20(1): 331, 2020 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-32652932

RESUMO

BACKGROUND: The activity of autonomic nervous system and its association with organ damage have not been entirely elucidated in hemorrhagic shock. The aim of this study was to investigate heart rate variability (HRV) and pulmonary gas exchange in hemorrhagic shock during unilateral subdiaphragmatic vagotomy. METHODS: Male Sprague Dawley rats were randomly assigned into groups of Sham, vagotomized (Vag), hemorrhagic shock (HS) and Vag + HS. HS was induced in conscious animals by blood withdrawal until reaching to mean arterial blood pressure (MAP) of 40 ± 5 mmHg. Then, it was allowed to MAP returning toward the basal values. MAP and heart rate (HR) were recorded throughout the experiments, HRV components of low (LF, sympathetic index), high (LH, parasympathetic index), and very low (VLF, injury index) frequencies and the LF/HF ratio calculated, and the lung histological and blood gas parameters assessed. RESULTS: In the initial phases of HS, the increase in HR with no change in MAP were observed in both HS and Vag + HS groups, while LF increased only in the HS group. In the second phase, HR and MAP decreased sharply in the HS group, whereas, only MAP decreased in the Vag + HS group. Meanwhile, LF and HF increased relative to their baselines in the HS and Vag + HS groups, even though the values were much pronounced in the HS group. In the third phase, HR, MAP, LF, HF, and the LF/HF ratio were returned back to their baselines in both HS and Vag + HS groups. In the Vag + HS group, the VLF was lower and HR was higher than those in the other groups. Furthermore, blood gas parameters and lung histology indicated the impairment of gas exchange in the Vag + HS group. CONCLUSIONS: The sympathetic activity is predominant in the first phase, whereas the parasympathetic activity is dominant in the second and third phases of hemorrhagic shock. There is an inverse relationship between the level of VLF and lung injury in vagotomized animals subjected to hemorrhagic shock.


Assuntos
Frequência Cardíaca , Coração/inervação , Lesão Pulmonar/fisiopatologia , Pulmão/inervação , Troca Gasosa Pulmonar , Choque Hemorrágico/fisiopatologia , Sistema Nervoso Simpático/fisiopatologia , Nervo Vago/fisiopatologia , Animais , Pressão Arterial , Modelos Animais de Doenças , Lesão Pulmonar/etiologia , Masculino , Ratos Sprague-Dawley , Choque Hemorrágico/complicações , Fatores de Tempo , Vagotomia , Nervo Vago/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA