RESUMO
Background: Doxorubicin, a commonly utilized anthracycline antibiotic and chemotherapeutic agent, has been associated with hepatotoxicity as an adverse effect. This study aimed to evaluate protective effects of zingerone, a bioactive compound derived from ginger renowned for its antioxidative attributes, on oxidative stress in doxorubicin-induced rat hepatotoxicity. Methods: In this experimental study, a total of 48 male Wistar rats were allocated into six distinct groups. The first group received a control treatment of normal saline. The second group was administered an intraperitoneal dose of 20 mg/kg of doxorubicin on day 5. The third group received an oral dose of 40 mg/kg of zingerone for 8 days. The fourth, fifth, and sixth groups were administered zingerone at doses of 10, 20, and 40 mg/kg, respectively, for the same 8-day period. On day 5, all groups, except the control group, received an intraperitoneal injection of doxorubicin. Following a 72-hour interval, the animals were anesthetized, and blood samples were collected to assess serum factors. Moreover, portions of the liver tissue were subjected to histopathological analysis and assessment of oxidative stress parameters. Results: The activity levels of serum enzymes, including aspartate transaminase (AST), alanine transaminase (ALT), and liver malondialdehyde (MDA), increased in the doxorubicin group. Conversely, the levels of other parameters such as glutathione peroxidase (GPX), superoxide dismutase (SOD), and glutathione (GSH) decreased. However, the co-administration of zingerone effectively reversed these levels, restoring them back to normal. Conclusions: These findings suggest that zingerone, particularly at a high dose, exhibit a hepatoprotective effect in the doxorubicin-induced hepatotoxicity model.
RESUMO
BACKGROUND: Cadmium, a metal implicated in environmental toxicity, is linked to tumor growth and cancer. On the other hand, zinc plays an essential function in oxidative stress and can counteract cadmium toxicity and carcinogenicity. This research aims to evaluate the urine and serum values of cadmium and zinc in breast cancer (BC) patients and their association with estrogen (ER) and HER-2 receptors, and redox status. METHODS: Forty BC patients and thirty healthy subjects participated in this study. Cadmium and zinc levels were measured in serum and urine samples by atomic absorption spectrophotometer. Redox status markers were determined by colorimetric methods. RESULTS: The amount of cadmium in the BC patients was substantially greater than in the healthy subjects. Zinc levels were significantly lower in patients with BC compared to controls. Breast cancer patients with ER-positive tumors had significantly higher urinary cadmium concentrations (U-Cd) compared to patients with ER-negative tumors. There was no significant difference between the parameters of redox status and the value of cadmium and zinc between patients with BC in the HER-2 subgroup. Malondialdehyde levels in the serum were substantially greater in BC patients than in healthy subjects. Total thiol level and catalase and superoxide dismutase activity in serum were considerably lower in BC patients than in healthy subjects. CONCLUSIONS: The etiology of BC may be due to a disturbance in redox status and levels of elements. Increasing U-Cd and lowering zinc levels in the serum could be the risk factors for BC.
RESUMO
Arsenic is a metalloid found in the environment that causes toxic effects in different organs, mainly the liver. This study aimed to investigate the protective effects of epicatechin (EC), a natural flavonol, on glucose intolerance (GI) and liver toxicity caused by sodium arsenite (SA) in mice. Our findings showed that SA exposure led to the development of GI. Liver tissue damage and decreased pancreatic Langerhans islet size were also observed in this study. Mice exposed to SA exhibited hepatic oxidative damage, indicated by reduced antioxidant markers (such as superoxide dismutase, catalase, glutathione peroxidase, and glutathione), along with elevated levels of thiobarbituric acid reactive substances. SA administration elevated the serum activities of liver enzymes alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase. Furthermore, notable increases in the levels of inflammatory and apoptotic markers (Toll-like receptor 4, nuclear factor-kappa B, tumor necrosis factor-α, nitric oxide, B-cell lymphoma-2, and cysteine aspartate-specific protease-3) were observed in the liver. Treatment of SA-exposed mice with EC considerably reversed these biochemical and histological changes. This study demonstrated the beneficial effects of EC in ameliorating SA-induced hyperglycemia and hepatotoxicity due to its ability to enhance the antioxidant system by modulating inflammation and apoptosis.
Assuntos
Arsenitos , Catequina , Doença Hepática Induzida por Substâncias e Drogas , Intolerância à Glucose , Fígado , Compostos de Sódio , Animais , Arsenitos/toxicidade , Compostos de Sódio/toxicidade , Camundongos , Intolerância à Glucose/induzido quimicamente , Intolerância à Glucose/tratamento farmacológico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Masculino , Catequina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Aspartato Aminotransferases/sangue , Aspartato Aminotransferases/metabolismo , Alanina Transaminase/sangue , Alanina Transaminase/metabolismo , Apoptose/efeitos dos fármacosRESUMO
Cardiotoxicity is one of the side effects of the anti-cancer drug doxorubicin (DOX) that limits its clinical application. Betaine (BT) is a natural agent with promising useful effects against inflammation and oxidative stress (OS). We assessed the effects of BT on DOX-induced cardiotoxicity in mice. Forty-two male NMRI mice were assigned to six groups: I: control; II: BT (200 mg/kg; orally, alone); III: DOX (2.5 mg/kg; six injections (ip)) for two weeks; IV, V, VI: BT (50 mg/kg, 100 mg/kg, and 200 mg/kg; orally, once a day for two weeks, respectively) plus DOX administration. The cardiac enzymes like cardiac troponin-I (cTn-I), lactate dehydrogenase (LDH), and creatine kinase-MB (CK-MB) were assessed in serum. Oxidative/inflammatory markers like nitric oxide (NO), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), reduced glutathione level (GSH), and glutathione peroxidase (GPx) activities were determined in cardiac tissue. The expressions of NOD-like receptor protein 3 (NLRP3), caspase-1, interleukin (IL)-1ß, and silent information regulator 1 (SIRT1) proteins were also evaluated in cardiac tissue. The results indicated that DOX significantly increased LDH, CK-MB, cTn-I, MDA, and NO levels and also the caspase-1, NLRP3, and IL-1ß expression. Furthermore, DOX caused a significant reduction in the GSH levels and SOD, CAT, GPX activities, and the expression of SIRT1 protein in heart tissue. However, BT significantly improved all studied parameters. The findings were confirmed by histopathological assessments of the heart. BT can protect against DOX-induced cardiotoxicity by suppressing the activation of NLRP3 and OS by stimulating the SIRT1 pathway.
RESUMO
The main objective of this study was to investigate the potential efficacy of carvacrol (CAR) in mitigating bleomycin (BLM)-induced pulmonary fibrosis (PF). Sixty-six male Wistar rats were assigned into two main groups of 7 and 21 days. They were divided into the subgroups of control, BLM, CAR 80 (only for the 21-day group), and CAR treatment groups. The CAR treatment groups received CAR (20, 40, and 80 mg/kg, orally) for 7 or 21 days after an instillation of BLM (5 mg/kg, intratracheally). Results indicated that BLM significantly increased total cell count in bronchoalveolar lavage fluid and the percentages of neutrophils and lymphocytes, and reduced the percentage of macrophages. CAR dose-dependently decreased total cell count and the percentage of neutrophils and lymphocytes. CAR significantly reduced thiobarbituric acid reactive substances and hydroxyproline levels and elevated the total thiol level and catalase, superoxide dismutase, and glutathione peroxidase activities in BLM-exposed rats. Furthermore, CAR decreased the transforming growth factor-ß1, connective transforming growth factor, and tumor necrosis factor-α on days 7 and 21. BLM increased interferon-γ on day 7 but decreased its level on day 21. However, CAR reversed interferon-γ levels on days 7 and 21. Based on histopathological findings, BLM induced inflammation on days 7 and 21, but for induction of fibrosis, 21-day study showed more fibrotic injuries than the 7-day group. CAR showed the improvement of fibrotic injuries. The effect of CAR against BLM-induced pulmonary fibrosis is possibly due to its antioxidant, anti-inflammatory, and antifibrotic activity.
RESUMO
Epicatechin (Epi) is one of the most abundant flavonoids present in different fruits and tea leaves. Emerging research illuminates the promising potential of catechins to serve as a shield against the damaging effects of arsenic (As) exposure in diverse organs.This study sought to discern whether Epi exhibits a therapeutic efficacy against arsenic-induced neurotoxicity in a murine model.The Naval Medical Research Institute (NMRI) mice were randomly partitioned into six distinct groups, which included a control group receiving normal saline, a group receiving a daily oral dose of arsenic (10 mg/kg) for 5 weeks, groups receiving As (10 mg/kg/day) orally for 5 weeks along with different doses of Epi (25-100 mg/kg) orally for the last 2 weeks, and a group receiving Epi (100 mg/kg) orally for 2 weeks. To assess the potential effects of Epi, neurobehavioral tests, various parameters of oxidative stress, and inflammation were evaluated.The findings of this investigation revealed that As-induced neurobehavioral toxicity was associated with a notable surge in lipid peroxidation and nitric oxide (NO) concentration, accompanied by a reduction in the levels of antioxidant markers. As heightened pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α) levels were observed alongside amplified nuclear factor kappa B (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) expression. However, treatment with Epi reversed these effects.On the whole, these findings indicate that Epi may hold promise therapeutic efficacy on As-induced neurotoxicity by improving antioxidant status and mitigating oxidative stress and inflammation. Nevertheless, further research is imperative to comprehensively grasp the potential protective effects of Epi in this particular context.
RESUMO
Background and purpose: Acetaminophen (APAP) is a commonly used antipyretic and pain reliever that its overdose causes acute liver toxicity. Umbelliferone (UMB) has many pharmacological effects. In this study, the hepatoprotective effect of UMB on acute hepatotoxicity induced by APAP was investigated. Experimental approach: Forty-nine male mice were separated into seven groups. The control received vehicle (i.p.), UMB group received UMB (120 mg/kg, i.p.), APAP group was treated with a single dose of APAP (350 mg/kg, i.p.), and pretreated groups received N-acetylcysteine (NAC, 200 mg/kg, i.p.) or different doses of UMB (30, 60, and 120 mg/kg, i.p.), respectively before APAP. Twenty-four hours after APAP injection, mice were sacrificed and blood and liver samples were collected. Then, serum and tissue samples were investigated for biochemical and histological studies. Findings/Results: A single dose of APAP caused elevation in the serum liver enzymes, including alanine aminotransferase, aspartate transaminase, and alkaline phosphatase. The amounts of thiobarbituric acid reactive substances, tumor necrosis factor-alpha, and nitric oxide increased in the mice's liver tissue. Moreover, the amount of total thiol and the activity of antioxidant enzymes (catalase, superoxide dismutase, and glutathione peroxidase) significantly diminished in the APAP group. Histological results confirmed the hepatotoxicity induced by APAP. However, UMB (more effective at 60 and 120 mg/kg) lessened APAP-induced hepatic injuries, which is comparable with NAC effects. Conclusion and implications: The findings of this study provided evidence that UMB ameliorates liver injury induced by APAP through its antioxidant and anti-inflammatory effects.
RESUMO
Arsenic, an environmental pollutant and poisonous metalloid, has adverse effects on different body organs, including the kidneys. Betaine is a natural nutrient that has many beneficial health effects. This research was conducted to examine the impact of betaine on nephrotoxicity caused by inorganic arsenic (NaAsO2) in mice. Mice were separated into following groups: control, NaAsO2 (50 ppm), NaAsO2 (50 ppm) + betaine (500 mg/kg), and betaine (500 mg/kg). Mice were received NaAsO2 via drinking water for 8 consecutive weeks and betaine was given to the animals via gavage once daily in the 7th and 8th weeks of the study. Upon completion of the study, the mice were euthanized and samples of serum and kidney were obtained for further evaluations. Administration of NaAsO2 increased the levels of blood urea nitrogen and creatinine in the serum. It enhanced the amounts of renal malondialdehyde and decreased the total thiol levels, as well as the activity of antioxidant enzymes (catalase, superoxide dismutase, and glutathione peroxidase). Furthermore, it enhanced the levels of renal inflammatory indicators (tumor necrosis factor-alpha and nitric oxide). Western blot results exhibited an increase in the protein expression of nuclear factor kappa B (NF-κB), and phosphorylated NF-κB in NaAsO2-treated mice. Histopathological results also confirmed kidney damage caused by NaAsO2. However, treatment with betaine improved NaAsO2-related kidney injuries in mice. The results of this work indicated that betaine can attenuate kidney damage caused by NaAsO2 by inhibiting oxidative stress and inflammation.
Assuntos
Betaína , Inflamação , Rim , Estresse Oxidativo , Animais , Betaína/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Masculino , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Arsênio/toxicidade , NF-kappa B/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismoRESUMO
NaAsO2 is known as a harmful pollutant all over the world, and many chronic heart diseases can be attributed to its prolonged exposure in NaAsO2-contaminated water. Therefore, considering the anti-inflammatory and antioxidant effects of betaine (BET), in this study, our team investigated the cardioprotective effects of this phytochemical agent on sodium arsenite (NaAsO2)-induced cardiotoxicity. Forty male mice were randomly divided into 4 groups: (I) Control; (II) BET (500 mg/kg); (III) NaAsO2 (50 ppm); and (IV) NaAsO2 + BET. NaAsO2 was given to the animals for 8 weeks, but BET was given in the last two weeks. After decapitation, inflammatory factors and biochemical parameters were measured, and Western blot analyses were performed. BET decrease the activity level of alanine aspartate aminotransferase, creatine kinase MB, thiobarbituric acid reactive substances level, inflammatory factors (tumor necrosis factor-α) content, and nuclear factor kappa B expression. Furthermore, BET increased cardiac total thiol and activity levels of catalase, superoxide dismutase, and glutathione peroxidase and nuclear factor erythroid-2 expression. Hence, the administration of BET ameliorated the deleterious effects stemming from the imbalance of oxidative and antioxidant pathways and histopathological alterations observed in NaAsO2-intoxicated mice, thereby attenuating oxidative stress-induced damage and inflammation.
Assuntos
Anti-Inflamatórios , Antioxidantes , Arsenitos , Betaína , Cardiotoxicidade , Modelos Animais de Doenças , Cardiopatias , Mediadores da Inflamação , Estresse Oxidativo , Transdução de Sinais , Compostos de Sódio , Animais , Arsenitos/toxicidade , Compostos de Sódio/toxicidade , Masculino , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Camundongos , Betaína/farmacologia , Cardiopatias/prevenção & controle , Cardiopatias/induzido quimicamente , Cardiopatias/patologia , Cardiopatias/metabolismo , Mediadores da Inflamação/metabolismo , Transdução de Sinais/efeitos dos fármacos , Biomarcadores/metabolismo , Biomarcadores/sangue , Citoproteção , Miocárdio/patologia , Miocárdio/metabolismoRESUMO
Cisplatin (CIS) stands as one of the most effective chemotherapy drugs currently available. Despite its anticancer properties, the clinical application of CIS is restricted due to nephrotoxicity. Our research aimed to specify the impact of ketotifen fumarate (KET) against nephrotoxicity induced by CIS in mice. Male NMRI mice were treated with KET (0.4, 0.8, and 1.6â¯mg/kg, ip) for seven days. On the fourth day of the study, a single dose of CIS (13â¯mg/kg, ip) was administered, and the mice were sacrificed on the eighth day. The results indicated that administration of KET attenuated CIS-induced elevation of BUN and Cr in the serum, as well as renal KIM-1 levels. This improvement was accompanied by a significant reduction in kidney tissue damage, which was supported by histopathological examinations. Likewise, the decrease in the ratio of GSH to GSSG and antioxidant enzyme activities (CAT, SOD, and GPx), and the increase in lipid peroxidation marker (TBARS) were reversed in KET-treated mice. The ELISA results revealed that KET-treated mice ameliorated CIS-induced elevation in the renal levels of TNF-α, IL-1ß, and IL-18. Western blot analysis exhibited that KET suppressed the activation of the transcription factor NF-κB and the NLRP3 inflammasome in the kidney of CIS-treated mice. Moreover, KET treatment reversed the changes in the protein expression of markers related to apoptosis (Bax, Bcl2, Caspase-3, and p53). Interestingly, KET significantly enhanced the cytotoxicity of CIS in HeLa cells. In conclusion, this study provides valuable insights into the promising effects of KET in mitigating CIS-induced nephrotoxicity.
Assuntos
Injúria Renal Aguda , Caspase 1 , Caspase 3 , Cisplatino , Cetotifeno , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Transdução de Sinais , Proteína X Associada a bcl-2 , Animais , Cisplatino/toxicidade , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais/efeitos dos fármacos , Camundongos , NF-kappa B/metabolismo , Caspase 1/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Caspase 3/metabolismo , Humanos , Cetotifeno/farmacologia , Proteína X Associada a bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Apoptose/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Células HeLa , Estresse Oxidativo/efeitos dos fármacosRESUMO
PURPOSE: In this study, the effect of thymoquinone (TQ) on CP-induced spermatogenesis defects in mice has been investigated. METHODS: Sperm parameters, serum testosterone concentration, histology, Bax/Bcl-2 ratio, and expression of autophagy-related biomarkers have been assessed. Total antioxidant capacity (TAC), total oxidant status (TOS), and oxidative stress index (OSI) in testicular tissue were examined for the evaluation of oxidative stress levels. RESULTS: CP has induced histological changes and significantly increased the Bax/Bcl-2 ratio, decreased testosterone concentration, testicular weight, and sperm quality. CP induced oxidative stress by elevating OSI in the testicular tissue (p < 0.05). Expression of the autophagy-inducer genes (ATG7, ATG5, and Beclin-1) and ratio of LC3B/LC3A proteins were significantly decreased, while mTOR expression was increased in the CP group. TQ pretreatment dose-dependently decreased the Bax/Bcl-2 ratio and mTOR gene expression while increasing the expression of ATG5 and ATG7 genes, LC3B/LC3A ratio, and Beclin-1 proteins. TQ could also dose-dependently reverse the histology, testosterone level, and sperm quality of the CP-intoxicated mice. CONCLUSIONS: These findings show that TQ pretreatment can enhance sperm production by inducing autophagy and reducing apoptosis and oxidative stress in the CP-intoxicated mouse testicles.
Assuntos
Apoptose , Autofagia , Benzoquinonas , Cisplatino , Estresse Oxidativo , Espermatozoides , Testículo , Masculino , Animais , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Autofagia/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia , Apoptose/efeitos dos fármacos , Benzoquinonas/farmacologia , Cisplatino/efeitos adversos , Cisplatino/farmacologia , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Espermatozoides/patologia , Testosterona/sangue , Espermatogênese/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismoRESUMO
Epidemiological evidence presents that dust storms are related to respiratory diseases, such as pulmonary fibrosis (PF). However, the precise underlying mechanisms of SPM-elicited adverse effects still need to be investigated. Epithelial-mesenchymal transition (EMT) process is a characteristic of PF. We discussed whether suspended particulate matter (SPM) is involved in EMT induction via transforming growth factor-ß1 (TGF-ß1). In this study, a detailed elemental analysis (55 elements), particle size, and morphology were determined. To investigate the toxicity of SPM, an MTT test was performed to detect cell viability. Next, A549 cells were exposed to selected concentrations of SPM (20 and 40 µg/mL) for single and repeated exposures. The DCFH-DA assay showed that exposure to SPM could produce reactive oxygen species (ROS). The ELISA assay demonstrated increased levels of interleukin-8 (IL-8) and TGF-ß1 in the supernatant. Western blot was used to detect the expression of proteins associated with EMT and the SMAD3-dependent pathway. Results of western blot demonstrated that E-cadherin was reduced, whereas p-SMAD3, vimentin, and α-smooth muscle actin were elevated. Our findings indicated that SPM triggered EMT by induction of oxidative stress, inflammation, and the TGF-ß1/SMAD3 pathway activation.
Assuntos
Fibrose Pulmonar , Fator de Crescimento Transformador beta1 , Humanos , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Células Epiteliais Alveolares/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Interleucina-8/metabolismo , Material Particulado/toxicidade , Transição Epitelial-Mesenquimal , Fibrose Pulmonar/metabolismo , Células Epiteliais/metabolismo , Proteína Smad3/metabolismoRESUMO
Morphine (MPH) is widely used for pain management; however, long-term MPH therapy results in antinociceptive tolerance and physical dependence, limiting its clinical use. Zingerone (ZIN) is a natural phenolic compound with neuroprotective effects. We investigated the effects of single and repeated doses of ZIN on MPH-induced tolerance, dependence, and underlying biochemical mechanisms. After a dose-response experiment, tolerance was developed to MPH (10 mg/kg, i.p.) for seven days. In the single-dose study, ZIN was administered on day seven. In the repeated-dose study, ZIN was administered for seven days. Naloxone (5 mg/kg, i.p., 120 min after MPH) was injected to assess withdrawal signs on day seven. The levels of thiobarbituric acid reactive substances (TBARS), nitric oxide (NO), total thiol (TT), and glutathione peroxidase (GPx) were measured in the prefrontal cortex. The protein levels of interleukin-1 beta (IL-1ß) and NLRP3-ASC-Caspase-1 axis were assessed by ELISA and Western blotting, respectively. Results showed that ZIN (100 mg/kg) had no antinociceptive activity, and subsequent experiments were performed at this dose. Repeated ZIN reversed MPH antinociceptive tolerance, whereas single ZIN did not. Single and repeated ZIN attenuated naloxone-induced jumping. In addition, repeated ZIN significantly inhibited weight loss. Repeated ZIN suppressed the MPH-induced increase in TBARS, NO, IL-1ß, NLRP3, ASC, and Caspase-1. It also inhibited MPH-induced TT and GPx reduction. In contrast, single ZIN had no effect. Findings suggest that ZIN reduces MPH-induced tolerance and dependence by suppressing oxidative stress and NLRP3 inflammasome activation. This study provides a novel therapeutic approach to reduce the side effects of MPH.
Assuntos
Guaiacol/análogos & derivados , Dependência de Morfina , Morfina , Camundongos , Animais , Morfina/farmacologia , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico , Naloxona/farmacologia , Naloxona/uso terapêutico , Estresse Oxidativo , Óxido Nítrico/metabolismo , Analgésicos/uso terapêutico , Caspases/metabolismo , Dependência de Morfina/metabolismoRESUMO
Objective: Paraquat (PQ) is a highly toxic herbicide that causes pulmonary fibrosis (PF), and no specific antidote is available against it. Teucrium polium L. is a plant that exhibits antioxidant and anti-inflammatory activities. The present study evaluates the preventive and therapeutic effects of T. polium extract (TPE) against PQ-induced lung fibrosis in rats. Materials and Methods: We divided rats into five groups of eight. Groups one and two received saline and PQ (20 mg/kg, i.p.), respectively. Groups three to five were treated with TPE (50, 100, and 200 mg/kg, by gavage) started one week before PQ administration and lasted three weeks after PQ administration. Results: Our findings showed that PQ significantly increased lung malondialdehyde, nitric oxide, hydroxyproline, lung index, Ashcroft score, red blood cells accumulation, and inflammatory cell infiltration. Moreover, PQ decreased catalase and glutathione peroxidase activities and glutathione content. The results of hematoxylin-eosin and Masson's trichrome staining indicated that PQ destroyed lung parenchyma and developed PF (p<0.05 to p<0.001). Gavage with TPE significantly improved biochemical and histological abnormalities induced by PQ in rats (p<0.05 to p<0.001). Conclusion: The current survey indicated that treatment with TPE could reduce and reverse PQ-induced PF, which may be due to the phenolic compounds present in TPE.
RESUMO
Arsenic compounds, which are used in different industries like pesticide manufacturing, cause severe toxic effects in almost all organs, including the kidneys. Since the primary route of exposure to arsenic is through drinking water, and millions of people worldwide are exposed to unsafe levels of arsenic that can pose a threat to their health, this research was performed to investigate the nephroprotective effects of Diosmin (Dios), a flavonoid found in citrus fruits, against nephrotoxicity induced by sodium arsenite (SA). To induce nephrotoxicity, SA (10 mg/kg, oral gavage) was administered to mice for 30 days. Dios (25, 50, and 100 mg/kg, oral gavage) was given to mice for 30 days prior to SA administration. After the study was completed, animals were euthanized and blood and kidney samples were taken for biochemical and histopathological assessments. Results showed that SA-treated mice significantly increased the blood urea nitrogen and creatinine levels in the serum. This increase was associated with significant kidney tissue damage in SA-treated mice, which was confirmed by histopathological studies. Furthermore, SA enhanced the amounts of renal thiobarbituric acid reactive substances and decreased total thiol reserves, as well as the activity of antioxidant enzymes such as catalase, superoxide dismutase, and glutathione peroxidase. Also, in the SA-exposed group, an increase in the levels of kidney inflammatory biomarkers, including nitric oxide and tumor necrosis factor-alpha was observed. The western blot analysis indicated an elevation in the protein expression of kidney injury molecule-1 and nuclear factor-kappa B in SA-treated mice. However, pretreatment with Dios ameliorated the SA-related renal damage in mice. Our findings suggest that Dios can protect the kidneys against the nephrotoxic effects of SA by its antioxidant and anti-inflammatory characteristics.
Assuntos
Arsênio , Diosmina , Humanos , Ratos , Camundongos , Animais , Antioxidantes/farmacologia , Diosmina/farmacologia , Diosmina/metabolismo , Arsênio/farmacologia , Arsênio/toxicidade , Ratos Wistar , Estresse Oxidativo , Rim , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Glutationa/metabolismoRESUMO
BACKGROUND: Epidemiological studies have shown that exposure to sodium arsenite (NaAsO2) causes diabetes and hepatotoxicity. Metformin (MET), an oral hypoglycemic agent, has long been used in diabetes therapy. In addition, MET has been shown to have hepatoprotective effects. In this study, we investigated the effects of MET on NaAsO2-induced hepatotoxicity and glucose intolerance in mice. METHODS: Mice were divided into four groups: Groups I and II received distilled water and NaAsO2 (10 mg/kg, p.o.) for five weeks, respectively. Groups III and IV were treated with NaAsO2 (10 mg/kg, p.o.) for three weeks, followed by MET (125 and 250 mg/kg, p.o.) for the last two weeks before NaAsO2. A glucose tolerance test was performed on day 35. The serum and tissue parameters were also evaluated. RESULTS: Histopathological examination revealed NaAsO2-induced liver and pancreatic damage. NaAsO2 caused hyperglycemia, glucose intolerance, and a significant increase in liver function enzymes. Administration of NaAsO2 significantly reduced hepatic superoxide dismutase, catalase, glutathione peroxidase, and total thiol levels and increased the content of reactive thiobarbituric acid substances. In addition, it led to an increase in liver nitric oxide levels and protein expression of tumor necrosis factor-α, nuclear factor kappa B, and cysteine-aspartic proteases-3. In contrast, treatment with MET (250 mg/kg) significantly improved NaAsO2-induced biochemical and histopathological changes. CONCLUSION: Our findings suggest that the significant effects of MET against NaAsO2-induced hepatotoxicity and glucose intolerance may be exerted via the regulation of oxidative stress, followed by suppression of inflammation and apoptosis.
Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Diabetes Mellitus , Intolerância à Glucose , Metformina , Camundongos , Animais , Metformina/farmacologia , Intolerância à Glucose/induzido quimicamente , Intolerância à Glucose/tratamento farmacológico , Estresse Oxidativo , Apoptose , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controleRESUMO
Arsenic is a toxic metalloid that increases the risk of hepatotoxicity and hyperglycemia. The objective of the present study was to assess the effect of ferulic acid (FA) in mitigating glucose intolerance and hepatotoxicity caused by sodium arsenite (SA). A total of six groups including control, FA 100 mg/kg, SA 10 mg/kg, and groups that received different doses of FA (10, 30, and 100 mg/kg), respectively just before SA (10 mg/kg) for 28 days were examined. Fasting blood sugar (FBS) and glucose tolerance tests were conducted on the 29th day. On day 30, mice were sacrificed and blood and tissues (liver and pancreas) were collected for further investigations. FA reduced FBS and improved glucose intolerance. Liver function and histopathological studies confirmed that FA preserved the structure of the liver in groups received SA. Furthermore, FA increased antioxidant defense and decreased lipid peroxidation and tumor necrosis factor-alpha level in SA-treated mice. FA, at the doses of 30 and 100 mg/kg, prevented the decrease in the expression of PPAR-γ and GLUT2 proteins in the liver of mice exposed to SA. In conclusion, FA prevented SA-induced glucose intolerance and hepatotoxicity by reducing oxidative stress, inflammation, and hepatic overexpression of PPAR-γ and GLUT2 proteins.
Assuntos
Arsênio , Doença Hepática Induzida por Substâncias e Drogas , Intolerância à Glucose , Camundongos , Animais , Arsênio/toxicidade , Arsênio/metabolismo , Intolerância à Glucose/induzido quimicamente , Intolerância à Glucose/tratamento farmacológico , Intolerância à Glucose/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Antioxidantes/farmacologia , Fígado , Estresse Oxidativo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismoRESUMO
Platinum-based drugs have been widely used in cancer treatment. However, their severe side effects have limited their use. So, researchers have been striving to find compounds with fewer side effects and greater efficacy, to overcome these drawbacks. Here, the cytotoxicity of platinum(II) complexes containing 2-(diphenylphosphino)pyridine ligands have been studied on human lung (A549), ovarian (SKOV3), breast (MCF-7) cancer, and normal breast (MCF-10A) cell lines. The most potent compound exhibits a marked cell growth-inhibitory effect against ovarian and lung cancer cells with IC50 values of 9.41 and 5.58â µM, respectively, which were significantly better than that observed for cisplatin (19.02, and 8.64â µM). Additionally, all complexes achieved significantly lower cytotoxicity towards MCF-10A. To investigate the interaction of complexes with DNA, an electrophoresis mobility shift assay was conducted, which indicated that complexes bind to DNA and affect its electrophoretic mobility. An analysis of apoptosis in A549 cells supported the conclusion that they inhibits cell proliferation via induction of apoptosis in a concentration-dependent manner. Molecular docking was also used to investigate the interactions of compounds with different DNA structures. These compounds have the ability to be a suitable pharmaceutical compound with further investigations in the field of cancer research.
Assuntos
Antineoplásicos , Complexos de Coordenação , Humanos , Platina/química , Complexos de Coordenação/química , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio/metabolismo , Ligantes , Antineoplásicos/química , Apoptose , Proliferação de Células , Piridinas/farmacologia , DNA/química , Ensaios de Seleção de Medicamentos AntitumoraisRESUMO
Medications for treating bipolar disorder (BD) are limited and can cause side effects if used chronically. Therefore, efforts are being made to use new agents in the control and treatment of BD. Considering the antioxidant and anti-inflammatory effects of dimethyl fumarate (DMF), this study was performed to examine the role of DMF on ketamine (KET)-induced manic-like behavior (MLB) in rats. Forty-eight rats were randomly divided into eight groups, including three groups of healthy rats: normal, lithium chloride (LiCl) (45 mg/kg, p.o.), and DMF (60 mg/kg, p.o.), and five groups of MLB rats: control, LiCl, and DMF (15, 30, and 60 mg/kg, p.o.), which received KET at a dose of 25 mg/kg, i.p. The levels of total sulfhydryl groups (total SH), thiobarbituric acid reactive substances (TBARS), nitric oxide (NO), and tumor necrosis factor-alpha (TNF-α), as well as the activity of antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) in the prefrontal cortex (PFC) and hippocampus (HPC), were measured. DMF prevented hyperlocomotion (HLM) induced by KET. It was found that DMF could inhibit the increase in the levels of TBARS, NO, and TNF-α in the HPC and PFC of the brain. Furthermore, by examining the amount of total SH and the activity of SOD, GPx, and CAT, it was found that DMF could prevent the reduction of the level of each of them in the brain HPC and PFC. DMF pretreatment improved the symptoms of the KET model of mania by reducing HLM, oxidative stress, and modulating inflammation.
Assuntos
Ketamina , Fármacos Neuroprotetores , Ratos , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Antioxidantes/farmacologia , Ketamina/farmacologia , Fumarato de Dimetilo/farmacologia , Fumarato de Dimetilo/uso terapêutico , Ratos Wistar , Substâncias Reativas com Ácido Tiobarbitúrico , Fator de Necrose Tumoral alfa/farmacologia , Estresse Oxidativo , Cloreto de Lítio/farmacologia , Superóxido Dismutase/metabolismoRESUMO
The use of arsenic in arsenic-based pesticides has been common in many countries in the past and today. There is considerable evidence linking arsenic exposure to hepatotoxicity and diabetes. Destructive phenomena such as hepatic oxidative stress and inflammation can interfere with glucose uptake and insulin function. In the present study, the antioxidant, anti-inflammatory, and molecular mechanism of citicoline against sodium arsenite-induced hepatotoxicity and glucose intolerance were investigated in mice. Citicoline improved glucose tolerance impaired by sodium arsenite. Citicoline increased the hepatic activity of catalase, superoxide dismutase, and glutathione peroxidase enzymes. Moreover, we found that citicoline prevents an increase in the levels of thiobarbituric acid reactive substances. Citicoline reduced levels of caspase 3, tumor necrosis factor-alpha, and interleukin 6 in sodium arsenite intoxicated groups. It was shown that citicoline increased the expression of arsenite methyltransferase, vesicle-associated membrane protein 2, peroxisome proliferator-activated receptor gamma, and sirtuin 3 to combat sodium arsenite toxicity. Citicoline reduced glucose intolerance, which was disrupted by sodium arsenite, by affecting the pancreatic and extra-pancreatic pathways involved in insulin production, secretion, and action. Based on our results, citicoline can be considered a modulating agent against arsenic-induced hepatotoxicity and hyperglycemia. Considering the relationship between arsenic exposure and the occurrence of side effects such as liver toxicity and diabetes, it is necessary to monitor and awareness of arsenic residues from sources such as drinking water.