Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2835, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565540

RESUMO

Obesity is a well-established risk factor for human cancer, yet the underlying mechanisms remain elusive. Immune dysfunction is commonly associated with obesity but whether compromised immune surveillance contributes to cancer susceptibility in individuals with obesity is unclear. Here we use a mouse model of diet-induced obesity to investigate tumor-infiltrating CD8 + T cell responses in lean, obese, and previously obese hosts that lost weight through either dietary restriction or treatment with semaglutide. While both strategies reduce body mass, only dietary intervention restores T cell function and improves responses to immunotherapy. In mice exposed to a chemical carcinogen, obesity-related immune dysfunction leads to higher incidence of sarcoma development. However, impaired immunoediting in the obese environment enhances tumor immunogenicity, making the malignancies highly sensitive to immunotherapy. These findings offer insight into the complex interplay between obesity, immunity and cancer, and provide explanation for the obesity paradox observed in clinical immunotherapy settings.


Assuntos
Neoplasias , Obesidade , Humanos , Animais , Camundongos , Monitorização Imunológica , Obesidade/etiologia , Dieta , Fatores de Risco
2.
J Inorg Biochem ; 244: 112238, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37119547

RESUMO

Human heme oxygenase-1 (hHO-1) plays a crucial role in human physiology because of its ability to metabolize free heme. The heme degradation products, biliverdin and bilirubin, were shown to have protective antioxidant properties in cells. In the context of cancer, hHO-1 function grants cancer cells defense from standard chemotherapy treatments, leading to the development of azole-based inhibitors that target hHO-1 for potential anticancer therapy. This work reports experimental and theoretical characterization of interactions between three azole-based inhibitors and the active site of hHO-1. It was found that all three compounds have Kd values within the µM order. The electronic absorption and resonance Raman (rR) spectra indicated that they bind to the ferric heme and coordinate through a nitrogen atom. rR measurements revealed varying effects of inhibitors on the geometry of heme vinyl groups in the ferric form of hHO-1. Changes in peripheral group orientation are known to affect heme redox potential, and consequently can reflect the inhibitory properties of studied azoles. The subsequent docking studies showed that inhibitors with lower Kd values are located close to two vinyl groups, while the compound with higher Kd is situated near only one, consistent with the rR studies. Finally, the rR studies of the CO adducts showed that the inhibitors bind to the heme in a reversible manner. Altogether, the combination of ligand binding studies, UV-Vis and rR spectroscopies, as well as computational approach revealed an importance of the steric hindrance imposed by the inhibitor's side chain.


Assuntos
Azóis , Heme Oxigenase (Desciclizante) , Humanos , Heme Oxigenase (Desciclizante)/química , Azóis/farmacologia , Heme Oxigenase-1/química , Análise Espectral Raman , Ferro , Heme/química
3.
Cancer Immunol Immunother ; 72(2): 397-408, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35907015

RESUMO

Checkpoint blockade immunotherapy has become a first-line treatment option for cancer patients, with success in increasingly diverse cancer types. Still, many patients do not experience durable responses and the reasons for clinical success versus failure remain largely undefined. Investigation of immune responses within the tumor microenvironment can be highly informative but access to tumor tissue is not always available, highlighting the need to identify biomarkers in the blood that correlate with clinical success. Here, we used single-cell RNA sequencing coupled with T cell receptor sequencing to define CD8+ T cell responses in peripheral blood of two patients with melanoma before and after immunotherapy with either anti-PD-1 (nivolumab) alone or the combination of anti-PD-1 and CTLA-4 (ipilimumab). Both treatment regimens increased transcripts associated with cytolytic effector function and decreased transcripts associated with naive T cells. These responses were further evaluated at the protein level and extended to a total of 53 patients with various cancer types. Unexpectedly, the induction of CD8+ T cell responses associated with cytolytic function was variable and did not predict therapeutic success in this larger patient cohort. Rather, a decrease in the frequency of T cells with a naive-like phenotype was consistently observed after immunotherapy and correlated with prolonged patient survival. In contrast, a more detailed clonotypic analysis of emerging and expanding CD8+ T cells in the blood revealed that a majority of individual T cell clones responding to immunotherapy acquired a transcriptional profile consistent with cytolytic effector function. These results suggest that responses to checkpoint blockade immunotherapy are evident and traceable in patients' blood, with outcomes predicted by the simultaneous loss of naive-like CD8+ T cells and the expansion of mostly rare and diverse cytotoxic CD8+ T cell clones.


Assuntos
Linfócitos T CD8-Positivos , Melanoma , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Receptor de Morte Celular Programada 1/metabolismo , Imunoterapia/métodos , Análise de Célula Única , Microambiente Tumoral
4.
Front Immunol ; 13: 1022732, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36582225

RESUMO

Vaccination against SARS-CoV-2 has been successful in protecting patients with cancer from severe infections, but how immune responses against COVID-19 vaccination interact with those elicited during cancer immunotherapy has not been fully described. Immune checkpoint blockade (ICB) disrupts inhibitory pathways in immune cells to improve function and induce tumor immunity but can often cause serious immune related adverse events (IRAEs). Because COVID-19 vaccination and ICB both boost immune responses, it is imperative to understand if combining these regimens causes synergistic enhancement of the immune system. Specifically, whether ICB impacts anti-vaccine immunity in previously vaccinated patients is important since a large percentage of newly diagnosed cancer patients eligible for immunotherapy will have already been vaccinated against COVID-19. To address this, we investigated the influence of ICB on SARS-CoV-2-spike protein (SP) antibody titers and T cell responses in cancer patients previously vaccinated against COVID-19. Human blood samples were collected from 29 vaccinated patients and 12 unvaccinated control patients at baseline (prior to ICB) and following two rounds of ICB infusion. Anti-SARS-CoV-2-SP IgG titers and T cell responses were quantified. Compared to responses at baseline, there was no significant difference in these immune responses after immunotherapy in vaccinated individuals (P=0.4583, P=0.4571, respectively). We interpret these results as evidence that ICB immunotherapy does not significantly enhance SARS-CoV-2-specific antibody titers or T cell responses. Although our study lacks corresponding IRAE rates, the results provide humoral and cellular immunological data that support recent reports documenting the clinical safety and efficacy of COVID-19 vaccination in patients receiving ICB. Additional longitudinal prospective studies, such as the VOICE study (ClinicalTrials.gov identifier NCT04715438) and CAPTURE study (ClinicalTrials.gov identifier NCT03226886), are warranted and will provide broader safety and immunological data defining the effect of systemic cancer therapies on COVID-19 immunity.


Assuntos
COVID-19 , Neoplasias , Humanos , SARS-CoV-2 , Inibidores de Checkpoint Imunológico/efeitos adversos , COVID-19/terapia , Vacinas contra COVID-19/efeitos adversos , Estudos Prospectivos , Imunoterapia/efeitos adversos , Neoplasias/terapia , Anticorpos Antivirais , Imunoglobulina G , Imunidade
5.
Cancer Immunol Res ; 9(2): 214-226, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33303575

RESUMO

Antitumor immunity is impaired in obese mice. Mechanistic insight into this observation remains sparse and whether it is recapitulated in patients with cancer is unclear because clinical studies have produced conflicting and controversial findings. We addressed this by analyzing data from patients with a diverse array of cancer types. We found that survival after immunotherapy was not accurately predicted by body mass index or serum leptin concentrations. However, oxidized low-density lipoprotein (ox-LDL) in serum was identified as a suppressor of T-cell function and a driver of tumor cytoprotection mediated by heme oxygenase-1 (HO-1). Analysis of a human melanoma gene expression database showed a clear association between higher HMOX1 (HO-1) expression and reduced progression-free survival. Our in vivo experiments using mouse models of both melanoma and breast cancer revealed HO-1 as a mechanism of resistance to anti-PD1 immunotherapy but also exposed HO-1 as a vulnerability that could be exploited therapeutically using a small-molecule inhibitor. In conclusion, our clinical data have implicated serum ox-LDL as a mediator of therapeutic resistance in patients with cancer, operating as a double-edged sword that both suppressed T-cell immunity and simultaneously induced HO-1-mediated tumor cell protection. Our studies also highlight the therapeutic potential of targeting HO-1 during immunotherapy, encouraging further translational development of this combination approach.See article by Kuehm et al., p. 227.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Heme Oxigenase-1/sangue , Lipoproteínas LDL/sangue , Melanoma/tratamento farmacológico , Obesidade/sangue , Animais , Antineoplásicos Imunológicos/uso terapêutico , Índice de Massa Corporal , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Imunoterapia , Ipilimumab/uso terapêutico , Estimativa de Kaplan-Meier , Modelos Lineares , Masculino , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/complicações , Obesidade/fisiopatologia , Estudos Retrospectivos
6.
Cancer Immunol Res ; 9(2): 227-238, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33023966

RESUMO

Checkpoint blockade immunotherapy relies on the empowerment of the immune system to fight cancer. Why some patients fail to achieve durable clinical responses is not well understood, but unique individual factors such as diet, obesity, and related metabolic syndrome could play a role. The link between obesity and patient outcomes remains controversial and has been mired by conflicting reports and limited mechanistic insight. We addressed this in a C57BL/6 mouse model of diet-induced obesity using a Western diet high in both fats and sugars. Obese mice bearing B16 melanoma or MC38 carcinoma tumors had impaired immune responses to immunotherapy and a reduced capacity to control tumor progression. Unexpectedly, these compromised therapeutic outcomes were independent of body mass and, instead, were directly attributed to dietary fructose. Melanoma tumors in mice on the high-fructose diet were resistant to immunotherapy and showed increased expression of the cytoprotective enzyme heme oxygenase-1 (HO-1). This increase in HO-1 protein was recapitulated in human A375 melanoma cells exposed to fructose in culture. Induced expression of HO-1 shielded tumor cells from immune-mediated killing and was critical for resistance to checkpoint blockade immunotherapy, which could be overcome in vivo using a small-molecule inhibitor of HO-1. This study reveals dietary fructose as a driver of tumor immune evasion, identifying HO-1 expression as a mechanism of resistance and a promising molecular target for combination cancer immunotherapy.See article by Khojandi et al., p. 214.


Assuntos
Citoproteção , Resistencia a Medicamentos Antineoplásicos , Frutose/metabolismo , Neoplasias/metabolismo , Evasão Tumoral , Animais , Antineoplásicos Imunológicos/uso terapêutico , Carcinoma , Linhagem Celular Tumoral , Feminino , Heme Oxigenase-1/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/tratamento farmacológico
7.
ISME J ; 13(8): 2068-2081, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31019270

RESUMO

Symbiotic associations impact and are impacted by their surrounding ecosystem. The association between Burkholderia bacteria and the soil amoeba Dictyostelium discoideum is a tractable model to unravel the biology underlying symbiont-endowed phenotypes and their impacts. Several Burkholderia species stably associate with D. discoideum and typically reduce host fitness in food-rich environments while increasing fitness in food-scarce environments. Burkholderia symbionts are themselves inedible to their hosts but induce co-infections with secondary bacteria that can serve as a food source. Thus, Burkholderia hosts are "farmers" that carry food bacteria to new environments, providing a benefit when food is scarce. We examined the ability of specific Burkholderia genotypes to induce secondary co-infections and assessed host fitness under a range of co-infection conditions and environmental contexts. Although all Burkholderia symbionts intracellularly infected Dictyostelium, we found that co-infections are predominantly extracellular, suggesting that farming benefits are derived from extracellular infection of host structures. Furthermore, levels of secondary infection are linked to conditional host fitness; B. agricolaris infected hosts have the highest level of co-infection and have the highest fitness in food-scarce environments. This study illuminates the phenomenon of co-infection induction across Dictyostelium associated Burkholderia species and exemplifies the contextual complexity of these associations.


Assuntos
Amoeba/microbiologia , Burkholderia/fisiologia , Dictyostelium/microbiologia , Interação Gene-Ambiente , Simbiose , Animais , Bactérias , Fenômenos Fisiológicos Bacterianos , Burkholderia/genética , Ecossistema , Genótipo , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA