Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 352: 141322, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38296212

RESUMO

Uranium is a naturally existing radioactive element present in the Earth's crust. It exhibits lithophilic characteristics, indicating its tendency to be located near the surface of the Earth and tightly bound to oxygen. It is ecotoxic, hence the need for its removal from the aqueous environment. This paper focuses on the variety of water treatment processes for the removal of uranium from water and this includes physical (membrane separation, adsorption and electrocoagulation), chemical (ion exchange, photocatalysis and persulfate reduction), and biological (bio-reduction and biosorption) approaches. It was observed that membrane filtration and ion exchange are the most popular and promising processes for this application. Membrane processes have high throughput but with the challenge of high power requirements and fouling. Besides high pH sensitivity, ion exchange does not have any major challenges related to its application. Several other unique observations were derived from this review. Chitosan/Chlorella pyrenoidosa composite adsorbent bearing phosphate ligand, hydroxyapatite aerogel and MXene/graphene oxide composite has shown super-adsorbent performance (>1000 mg/g uptake capacity) for uranium. Ultrafiltration (UF) membranes, reverse osmosis (RO) membranes and electrocoagulation have been observed not to go below 97% uranium removal/conversion efficiency for most cases reported in the literature. Heat persulfate reduction has been explored quite recently and shown to achieve as high as 86% uranium reduction efficiency. We anticipate that future studies would explore hybrid processes (which are any combinations of multiple conventional techniques) to solve various aspects of the process design and performance challenges.


Assuntos
Chlorella , Urânio , Purificação da Água , Filtração , Ultrafiltração/métodos , Poluição da Água , Adsorção , Purificação da Água/métodos
2.
Inflammopharmacology ; 30(6): 1955-1976, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36050507

RESUMO

Lycopene is a group of phytochemicals found in nature, primarily in fruits and vegetables. Lycopene is thought to protect against a variety of diseases attributed to its antioxidant capabilities. Lycopene has anti-inflammatory, anti-cancer, and immunity-boosting qualities, among other biological and pharmacological benefits. COVID-19 (coronavirus disease 19) is an infectious disease caused by the SARS-CoV-2 virus, which has recently emerged as one of the world's leading causes of death. Patients may be asymptomatic or show signs of respiratory, cytokine release syndrome, gastrointestinal, or even multiple organ failure, all of which can lead to death. In COVID-19, inflammation, and cytokine storm are the key pathogenic mechanisms, according to SARS-CoV-2 infection symptoms. ARDS develops in some vulnerable hosts, which is accompanied by an inflammatory "cytokine syndrome" that causes lung damage. Immunological and inflammatory markers were linked to disease severity in mild and severe COVID-19 cases, implying that inflammatory markers, including IL-6, CRP, ESR, and PCT were significantly linked with COVID-19 severity. Patients with severe illness have reduced levels of several immune subsets, including CD4 + T, NK, and CD8 + cells. As a result, lycopene can be commended for bolstering physiological defenses against COVID-19 infections.


Assuntos
Tratamento Farmacológico da COVID-19 , Humanos , SARS-CoV-2 , Licopeno , Síndrome da Liberação de Citocina/tratamento farmacológico , Citocinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA