Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 219: 949-963, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-35934080

RESUMO

Cellulose is an interesting biopolymer offering numerous functionalization possibilities for various applications. Yet, cellulose functionalization usually involves expensive chemicals and complex processes. Here, we aim to utilize inexpensive fertilizer-grade phosphate for cellulose functionalization. Cellulose microfibers (CMF) were isolated from Giant Reed (GR) and were then phosphorylated using either a reagent-grade or a fertilizer-grade diammonium hydrogen phosphate (DAP) in the presence of urea following a water-based protocol. The effect of DAP on the phosphorylation reaction was mainly studied by conductometric titration, ICP-OES and FTIR, while further characterization was performed by SEM/EDX, TGA and XRD to investigate the morphology, composition, charge content, structure, and thermal degradation of the phosphorylated materials. It was found that cellulose phosphorylation using DAP fertilizer gave materials with the same charge content as that registered when using the reagent-grade DAP. Optimizing the reaction conditions with respect to the amount of fertilizer-grade DAP used for the phosphorylation gave high charge content (7000 mmol·g-1). The corresponding phosphorylated CMF (P-CMF) were processed into a paper and used as sorbent for methylene blue (MB) removal from aqueous solutions with different concentrations. The findings indicated that the pseudo-second-order model could be useful to assess the adsorption kinetics while the Langmuir isotherm model can suitably describe the adsorption isotherms. With fast adsorption kinetics (2-6 h), high adsorption efficiency (92-99 %) and a MB adsorption capacity of ~1200 mg·g-1 surpassing what has been reported so far for cellulose-based sorbents, the P-CMF paper holds great promises for the effective remediation of dye-contaminated wastewater effluents. Adsorption/desorption tests confirmed the reusability and regeneration of the paper with a recovery of 100 % for MB in the second cycle.


Assuntos
Azul de Metileno , Poluentes Químicos da Água , Adsorção , Celulose/química , Fertilizantes , Concentração de Íons de Hidrogênio , Cinética , Azul de Metileno/química , Fosfatos , Fosforilação , Ureia , Águas Residuárias/química , Água , Poluentes Químicos da Água/química
2.
Int J Biol Macromol ; 189: 1029-1042, 2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34411612

RESUMO

Effective fertilizers management is essential for sustainable agricultural practices. One way to improve agronomic practices is by using slow-release fertilizers (SRF) that have shown interesting role in optimizing nutrients availability for plants growth. Considering the current ecological concerns, coated SRF using ecofriendly materials continue to attract great attention. In this context, novel waterborne and biodegradable coating nanocomposite formulations were elaborated from cellulose nanocrystals (CNC)-filled poly (vinyl alcohol) (PVA) for slow release NPK fertilizer with water retention property. CNC were extracted from hemp stalks using sulfuric acid hydrolysis process and their physico-chemical characteristics were investigated. CNC with various weight loadings (6, 10, 14.5 wt%) were incorporated into PVA polymer via solvent mixing method to produce viscous coating nanocomposite formulations with moderated shear viscosity. Uniform PVA@CNC coating microlayer was applied on the surface of NPK fertilizer granules in Wurster chamber of a fluidized bed dryer at controlled spraying and drying parameters. The nitrogen, phosphorus and potassium release profiles from coated NPK fertilizer were determined in water and soil. It was found that the coating materials extended the N-P-K nutrients release time from 3 days for uncoated fertilizer to 10 and 30 days for neat PVA- and CNC/PVA-coated fertilizer in soil medium, indicating the positive role of the presence of CNC in the PVA-based coatings. The morphology, coating rate and crushing strength of the as-prepared coated products were investigated in addition to their effect on water holding capacity and water retention of the soil. Enhanced crushing strength and water retention with a positive effect on the soil moisture were observed after coating NPK fertilizer, mainly with high CNC content (14.5 wt%). Therefore, these proposed nanocomposite coating materials showed a great potential for producing a new class of SRF with high nutrients use efficiency and water retention capacity, which could be beneficial to sustainable crop production.


Assuntos
Celulose/química , Fertilizantes , Nanocompostos/química , Nanopartículas/química , Álcool de Polivinil/química , Água/química , Interações Hidrofóbicas e Hidrofílicas , Nanocompostos/ultraestrutura , Nanopartículas/ultraestrutura , Nitrogênio/análise , Fósforo/análise , Potássio/análise , Solo/química , Temperatura , Viscosidade
3.
Molecules ; 26(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203117

RESUMO

Three phosphate glass compositions, VF1, VF2, and VF3, containing macro and micronutrients with different [K2O/(CaO+MgO)] ratio, were formulated to be used as controlled release fertilizers for tomato crop, depending on their chemical durability in water and their propriety with respect to the standards of controlled-release fertilizers. This study investigated the influence of [K2O/(CaO+MgO)] ratio variation on glass properties. For this, the elaborated glasses have undergone a chemical characterization using inductively coupled plasma atomic emission spectroscopy, a thermal characterization using differential thermal analysis, a physicochemical characterization based on density and molar volume measurements, and a structural characterization using Raman spectroscopy, Fourier-transform infrared spectroscopy, and X-ray diffraction. In addition, the chemical durability was determined by measuring the percentage of weight loss and the pH. Results revealed that the glass structure and composition have the mean role in controlling the release of nutrients in water. By increasing [K2O/(CaO+MgO)] ratio, the dissolution rates of the glasses increased due to the shrinking in the rate of crosslinking between phosphate chains, accompanied with a diminution in transition and crystallization temperatures, and an increase in the molar volume. An agronomic valorization of VF1 and VF2 glass fertilizers, which showed dissolution profiles adequate to the criteria of controlled-release fertilizers, was carried out to evaluate their efficiency on tomato crops. These glass fertilizers improved soil mineral content and tomato performances in comparison to the control and NPK treatments with the distinction of VF2. The results highlight the effectiveness of these smart fertilizers toward their potential large-scale application to improve crop production and quality for high nutritional value foods.


Assuntos
Produção Agrícola , Produtos Agrícolas/crescimento & desenvolvimento , Fertilizantes , Frutas/crescimento & desenvolvimento , Vidro/química , Fosfatos , Solo , Solanum lycopersicum/crescimento & desenvolvimento , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Fosfatos/química , Fosfatos/farmacologia
4.
Materials (Basel) ; 14(5)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800432

RESUMO

Four different phosphate glass formulations (F0, F1, F2, and F3) were developed according o wheat nutrient requirements to be used as controlled-release fertilizers. These glasses contain macro-elements (P2O5-K2O-CaO-MgO), with the addition of microelements (Fe-Mn-Zn-B-Cu-Mo) in each formulation. The effects of these elements' addition on thermal properties, glass structure, and dissolution behaviors were investigated. Results showed that these glasses are composed essentially of metaphosphate chains and that the addition of micronutrients could change the chemical durability of phosphate glasses. A greenhouse experiment was performed using wheat (Triticum durum L.) to evaluate the efficiency of the four glasses, with or without application of chemical nitrogen (N) (N + VF and VF, respectively). The different formulas were tested using two rates of 0.3 and 1 g per plant. In addition to the vitreous fertilizer formulations, two other treatments were applied: control treatment with no amendment and Nitrogen-Phosphorus-Potassium treatment with the application of the conventional fertilizers on the base of optimal rates. After four months of cultivation, vitreous fertilizers application significantly improved growth (7% to 88%), photosynthetic (8% to 49%) parameters, and yield (29% to 33%) compared to NPK treatment and to the control. It has been found that formulas F1, F2, and F3 may constitute a potential alternative to conventional fertilization due to their positive impact on wheat production and can be used in practice as an environmentally controlled-release fertilizer.

5.
Int J Biol Macromol ; 162: 136-149, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32561278

RESUMO

With the growing environmental concerns and an emergent demand, a growing attention is turned to eco-friendly superabsorbent hydrogels instead of synthetic counterparts. Hydrogels based on cellulose derivatives can absorb and retain a huge amount of water in the interstitial sites of their structures, stimulating their uses in various useful industrial purposes. In this work, cross-linked superabsorbent composite hydrogel films (CHF) were designed, manufactured and characterized, by taking advantage of the combination of carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC) and newly developed regenerated cellulose (RC) spheres. RC with sphere-like shape was successfully prepared using a green method based on cold phosphoric acid-mediated dissolution of microcrystalline cellulose (MCC) followed by regeneration process using water as anti-solvent. Prior to be used, the morphological and structural properties of RC spheres, with an average diameter of 477 ± 270 nm, were examined by SEM, AFM, XRD, FTIR and TGA techniques. CHF crosslinked with citric acid were, in fact, prepared by solvent casting method with different RC weight fractions (i.e. 0, 2.5, 5, 10 and 15 wt%), then the crosslinking reaction was triggered by thermal treatment at 80 °C during 8 h. Prepared CHF were then characterized in terms of their structural, thermal, tensile and transparency properties. Swelling tests were carried at three different aqueous media (i.e. with a pH = 3, 6.4 or 11) to evaluate the water retention capacity of hydrogel films, as well as, the pH effect on their swelling and hydrolytic degradation properties. Collected results reveal that CHF with low RC content (i.e. RC weight fraction of 2.5 or 5 wt%) have the best tensile and swelling properties, with a tensile strength and a swelling capacity (at pH = 6.4) up to 95 MPa and 4000%, respectively.


Assuntos
Celulose/química , Hidrogéis/química , Ácidos Fosfóricos/química , Carboximetilcelulose Sódica/química , Celulose/análogos & derivados , Celulose/ultraestrutura , Hidrogéis/síntese química , Concentração de Íons de Hidrogênio , Hidrólise , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Fósforo/química , Solventes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração , Água/química , Difração de Raios X
6.
Materials (Basel) ; 13(11)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32527051

RESUMO

Phosphate glasses have potentially interesting properties that can be used in various applications. Recently, different studies are focusing on their dissolution behaviours that can be modified to suit some environmental applications, such as controlled-release fertilisers. In this work, magnesium had been suggested to improve the glass durability of 3P2O5-2K2O-(1 - x)CaO-xMgO glasses (0 ≤ x ≤ 1). Indeed, its effect on glass structure, thermal properties and most important dissolution behaviours were studied, in order to evaluate their suitability of being used as controlled-release fertilisers. Various compositions in which calcium was partially replaced by magnesium were prepared by melting at 800 °C. The samples were characterised by differential scanning calorimetry, density measurements, X-Ray diffraction, FTIR spectroscopy and Raman spectroscopy. The dissolution behaviours were investigated using inductively coupled plasma optical emission spectrometry ICP-OES, pH measurements and SEM. Substitution of calcium by magnesium reduced the glass density, owing to the lower atomic weight of magnesium compared to calcium, and caused an increase in glass transition and crystallisation temperatures. Magnesium substitution significantly improved the chemical durability of the glasses due to more covalent Mg-O bond than the Ca-O bond. This study demonstrated that 3P2O5-2K2O-0.3CaO-0.7MgO (x = 0.7) had a dissolution profile adequate to the criteria of controlled-release fertilisers and could be used to nourish the plants with phosphorus, potassium, calcium and magnesium.

7.
Int J Biol Macromol ; 161: 492-502, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32534086

RESUMO

The coating of fertilizers by polymers is one of the most efficient tools for their slow and control release into soil. This strategy avoids excessive use of the fertilizers and increases their availability to the crops needs. In the present paper, hydro-soluble diammonium phosphates (DAP) fertilizer was double coated following the dip-coating process by chitosan-clay composites as inner coating and paraffin wax as an outer coating. The chitosan composite preparation and characterization were deeply investigated. The montmorillonite (MMT) clay incorporation as filler improves the water barrier diffusion, mechanical properties, and thermal stability of the composite. The combination of the swelling behavior of the chitosan-clay composite (inner coating) and the hydrophobic property of paraffin wax (outer coating) was confirmed by the water holding capacity evaluation and the phosphorus release essays in water and soil. Indeed, the phosphorus dissolution from the coated DAP granules was significantly delayed compared to the uncoated DAP. Moreover, the biodegradation study of composite material in soil and the biochemical oxygen demand (BOD) tests revealed that the coating system proposed could be considered as a carbon source for microorganisms after the fertilization process, which confirms its sustainability.


Assuntos
Quitosana/química , Parafina/química , Fosfatos/química , Argila/química , Fertilizantes , Fósforo/química , Polímeros/química , Solo/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA