Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39290174

RESUMO

BACKGROUND: Recent advances in multivariate pattern recognition have fostered the search for reliable neuroimaging-based biomarkers in psychiatric conditions, including schizophrenia. These approaches consider the complex pattern of alterations in brain function and structure, overcoming the limitations of traditional univariate methods. To assess the reliability of neuroimaging-based biomarkers and the contribution of study characteristics in distinguishing individuals with schizophrenia spectrum disorder (SSD) from healthy controls (HCs), we conducted a systematic review of the studies that used multivariate pattern recognition for this objective. METHODS: We systematically searched PubMed, Scopus, and Web of Science for studies on SSD classification using multivariate pattern analysis on magnetic resonance imaging data. We employed a bivariate random-effects meta-analytic model to explore the classification of sensitivity (SE) and specificity (SP) across studies while also evaluating the moderator effects of clinical and non-clinical variables. RESULTS: A total of 119 studies (with 12,723 patients with SSD and 13,196 HCs) were identified. The meta-analysis estimated a SE of 79.1% (95% confidence interval [CI], 77.1%-81.0%) and a SP of 80.0% (95% CI, 77.8%-82.0%). In particular, the Positive and Negative Syndrome Scale and the Global Assessment of Functioning scores, age, age of onset, duration of untreated psychosis, deep learning, algorithm type, features selection, and validation methods had significant effects on classification performance. CONCLUSIONS: Multivariate pattern analysis reliably identifies neuroimaging-based biomarkers of SSD, achieving ∼80% SE and SP. Despite clinical heterogeneity, discernible brain modifications effectively differentiate SSD from HCs. Classification performance depends on patient-related and methodological factors crucial for the development, validation, and application of prospective models in clinical settings.

2.
Schizophr Bull ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39248267

RESUMO

BACKGROUND: Electroencephalography (EEG) is a noninvasive, cost-effective, and robust tool, which directly measures in vivo neuronal mass activity with high temporal resolution. Combined with state-of-the-art machine learning (ML) techniques, EEG recordings could potentially yield in silico biomarkers of severe mental disorders. HYPOTHESIS: Pathological and physiological aging processes influence the electrophysiological signatures of schizophrenia (SCZ) and major depressive disorder (MDD). STUDY DESIGN: From a single-center cohort (N = 735, 51.6% male) comprising healthy control individuals (HC, N = 245) and inpatients suffering from SCZ (N = 250) or MDD (N = 240), we acquired resting-state 19 channel-EEG recordings. Using repeated nested cross-validation, support vector machine models were trained to (1) classify patients with SCZ or MDD and HC individuals and (2) predict age in HC individuals. The age model was applied to patient groups to calculate Electrophysiological Age Gap Estimation (EphysAGE) as the difference between predicted and chronological age. The links between EphysAGE, diagnosis, and medication were then further explored. STUDY RESULTS: The classification models robustly discriminated SCZ from HC (balanced accuracy, BAC = 72.7%, P < .001), MDD from HC (BAC = 67.0%, P < .001), and SCZ from MDD individuals (BAC = 63.2%, P < .001). Notably, central alpha (8-11 Hz) power decrease was the most consistently predictive feature for SCZ and MDD. Higher EphysAGE was associated with an increased likelihood of being misclassified as SCZ in HC and MDD (ρHC = 0.23, P < .001; ρMDD = 0.17, P = .01). CONCLUSIONS: ML models can extract electrophysiological signatures of MDD and SCZ for potential clinical use. However, the impact of aging processes on diagnostic separability calls for timely application of such models, possibly in early recognition settings.

3.
Res Sq ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38559014

RESUMO

Symptom heterogeneity characterizes psychotic disorders and hinders the delineation of underlying biomarkers. Here, we identify symptom-based subtypes of recent-onset psychosis (ROP) patients from the multi-center PRONIA (Personalized Prognostic Tools for Early Psychosis Management) database and explore their multimodal biological and functional signatures. We clustered N = 328 ROP patients based on their maximum factor scores in an exploratory factor analysis on the Positive and Negative Syndrome Scale items. We assessed inter-subgroup differences and compared to N = 464 healthy control (HC) individuals regarding gray matter volume (GMV), neurocognition, polygenic risk scores, and longitudinal functioning trajectories. Finally, we evaluated factor stability at 9- and 18-month follow-ups. A 4-factor solution optimally explained symptom heterogeneity, showing moderate longitudinal stability. The ROP-MOTCOG (Motor/Cognition) subgroup was characterized by GMV reductions within salience, control and default mode networks, predominantly throughout cingulate regions, relative to HC individuals, had the most impaired neurocognition and the highest genetic liability for schizophrenia. ROP-SOCWD (Social Withdrawal) patients showed GMV reductions within medial fronto-temporal regions of the control, default mode, and salience networks, and had the lowest social functioning across time points. ROP-POS (Positive) evidenced GMV decreases in salience, limbic and frontal regions of the control and default mode networks. The ROP-AFF (Affective) subgroup showed GMV reductions in the salience, limbic, and posterior default-mode and control networks, thalamus and cerebellum. GMV reductions in fronto-temporal regions of the salience and control networks were shared across subgroups. Our results highlight the existence of behavioral subgroups with distinct neurobiological and functional profiles in early psychosis, emphasizing the need for refined symptom-based diagnosis and prognosis frameworks.

4.
Mol Psychiatry ; 28(5): 2008-2017, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147389

RESUMO

Using machine learning, we recently decomposed the neuroanatomical heterogeneity of established schizophrenia to discover two volumetric subgroups-a 'lower brain volume' subgroup (SG1) and an 'higher striatal volume' subgroup (SG2) with otherwise normal brain structure. In this study, we investigated whether the MRI signatures of these subgroups were also already present at the time of the first-episode of psychosis (FEP) and whether they were related to clinical presentation and clinical remission over 1-, 3-, and 5-years. We included 572 FEP and 424 healthy controls (HC) from 4 sites (Sao Paulo, Santander, London, Melbourne) of the PHENOM consortium. Our prior MRI subgrouping models (671 participants; USA, Germany, and China) were applied to both FEP and HC. Participants were assigned into 1 of 4 categories: subgroup 1 (SG1), subgroup 2 (SG2), no subgroup membership ('None'), and mixed SG1 + SG2 subgroups ('Mixed'). Voxel-wise analyses characterized SG1 and SG2 subgroups. Supervised machine learning analyses characterized baseline and remission signatures related to SG1 and SG2 membership. The two dominant patterns of 'lower brain volume' in SG1 and 'higher striatal volume' (with otherwise normal neuromorphology) in SG2 were identified already at the first episode of psychosis. SG1 had a significantly higher proportion of FEP (32%) vs. HC (19%) than SG2 (FEP, 21%; HC, 23%). Clinical multivariate signatures separated the SG1 and SG2 subgroups (balanced accuracy = 64%; p < 0.0001), with SG2 showing higher education but also greater positive psychosis symptoms at first presentation, and an association with symptom remission at 1-year, 5-year, and when timepoints were combined. Neuromorphological subtypes of schizophrenia are already evident at illness onset, separated by distinct clinical presentations, and differentially associated with subsequent remission. These results suggest that the subgroups may be underlying risk phenotypes that could be targeted in future treatment trials and are critical to consider when interpreting neuroimaging literature.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Humanos , Brasil , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA