RESUMO
Hearing loss is the most common human sensory deficit. Severe-to-complete sensorineural hearing loss is often treated by electrical cochlear implants (eCIs) bypassing dysfunctional or lost hair cells by direct stimulation of the auditory nerve. The wide current spread from each intracochlear electrode array contact activates large sets of tonotopically organized neurons limiting spectral selectivity of sound coding. Despite many efforts, an increase in the number of independent eCI stimulation channels seems impossible to achieve. Light, which can be better confined in space than electric current may help optical cochlear implants (oCIs) to overcome eCI shortcomings. In this review, we present the current state of the optogenetic sound encoding. We highlight optical sound coding strategy development capitalizing on the optical stimulation that requires fine-grained, fast, and power-efficient real-time sound processing controlling dozens of microscale optical emitters as an emerging research area.
RESUMO
When hearing fails, electrical cochlear implants (eCIs) partially restore hearing by direct stimulation of spiral ganglion neurons (SGNs). As light can be better confined in space than electrical current, optical CIs (oCIs) provide more spectral information promising a fundamental improvement of hearing restoration by cochlear implants. Here, we turned to computer modelling for predicting the outcome of optogenetic hearing restoration by future oCIs in humans. We combined three-dimensional reconstruction of the human cochlea with ray-tracing simulation of emission from LED or laser-coupled waveguide emitters of the oCI. Irradiance was read out at the somata of SGNs. The irradiance values reached with waveguides were about 14 times higher than with LEDs, at the same radiant flux of the emitter. Moreover, waveguides outperformed LEDs regarding spectral selectivity. oCIs with either emitter type showed greater spectral selectivity when compared to eCI. In addition, modeling the effects of the source-to-SGN distance, orientation of the sources and impact of scar tissue further informs the development of optogenetic hearing restoration.