Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Cancer Res ; 30(9): 1906-1915, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38350001

RESUMO

PURPOSE: The response to immune checkpoint inhibitors (ICI) in deficient mismatch repair (dMMR) colorectal cancer and endometrial cancer is variable. Here, we explored the differential response to ICIs according to different mismatch repair alterations. EXPERIMENTAL DESIGN: Colorectal cancer (N = 13,701) and endometrial cancer (N = 3,315) specimens were tested at Caris Life Sciences. Median overall survival (mOS) was estimated using Kaplan-Meier. The prediction of high-, intermediate-, and low-affinity epitopes by tumor mutation burden (TMB) values was conducted using R-squared (R2). RESULTS: Compared with mutL (MLH1 and PMS2) co-loss, the mOS was longer in mutS (MSH2 and MSH6) co-loss in all colorectal cancer (54.6 vs. 36 months; P = 0.0.025) and endometrial cancer (81.5 vs. 48.2 months; P < 0.001) patients. In ICI-treated patients, the mOS was longer in mutS co-loss in colorectal cancer [not reached (NR) vs. 36 months; P = 0.011). In endometrial cancer, the mOS was NR vs. 42.2 months; P = 0.711]. The neoantigen load (NAL) in mutS co-loss compared with mutL co-loss was higher in colorectal cancer (high-affinity epitopes: 25.5 vs. 19; q = 0.017, intermediate: 39 vs. 32; q = 0.004, low: 87.5 vs. 73; q < 0.001) and endometrial cancer (high-affinity epitopes: 15 vs. 11; q = 0.002, intermediate: 27.5 vs. 19; q < 0.001, low: 59 vs. 41; q < 0.001), respectively. R2 ranged from 0.25 in mutS co-loss colorectal cancer to 0.95 in mutL co-loss endometrial cancer. CONCLUSIONS: Patients with mutS co-loss experienced longer mOS in colorectal cancer and endometrial cancer and better response to ICIs in colorectal cancer. Among all explored biomarkers, NAL was higher in mutS co-loss and may be a potential driving factor for the observed better outcomes. TMB did not reliably predict NAL.


Assuntos
Neoplasias Colorretais , Reparo de Erro de Pareamento de DNA , Neoplasias do Endométrio , Inibidores de Checkpoint Imunológico , Mutação , Humanos , Feminino , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Idoso , Masculino , Pessoa de Meia-Idade , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/imunologia , Neoplasias do Endométrio/patologia , Biomarcadores Tumorais/genética , Adulto , Idoso de 80 Anos ou mais , Prognóstico , Proteínas de Ligação a DNA/genética
2.
Clin Cancer Res ; 28(12): 2704-2714, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35302596

RESUMO

PURPOSE: KRAS mutation (MT) is a major oncogenic driver in pancreatic ductal adenocarcinoma (PDAC). A small subset of PDACs harbor KRAS wild-type (WT). We aim to characterize the molecular profiles of KRAS WT PDAC to uncover new pathogenic drivers and offer targeted treatments. EXPERIMENTAL DESIGN: Tumor tissue obtained from surgical or biopsy material was subjected to next-generation DNA/RNA sequencing, microsatellite instability (MSI) and mismatch repair status determination. RESULTS: Of the 2,483 patients (male 53.7%, median age 66 years) studied, 266 tumors (10.7%) were KRAS WT. The most frequently mutated gene in KRAS WT PDAC was TP53 (44.5%), followed by BRAF (13.0%). Multiple mutations within the DNA-damage repair (BRCA2, ATM, BAP1, RAD50, FANCE, PALB2), chromatin remodeling (ARID1A, PBRM1, ARID2, KMT2D, KMT2C, SMARCA4, SETD2), and cell-cycle control pathways (CDKN2A, CCND1, CCNE1) were detected frequently. There was no statistically significant difference in PD-L1 expression between KRAS WT (15.8%) and MT (17%) tumors. However, KRAS WT PDAC were more likely to be MSI-high (4.7% vs. 0.7%; P < 0.05), tumor mutational burden-high (4.5% vs. 1%; P < 0.05), and exhibit increased infiltration of CD8+ T cells, natural killer cells, and myeloid dendritic cells. KRAS WT PDACs exhibited gene fusions of BRAF (6.6%), FGFR2 (5.2%), ALK (2.6%), RET (1.3%), and NRG1 (1.3%), as well as amplification of FGF3 (3%), ERBB2 (2.2%), FGFR3 (1.8%), NTRK (1.8%), and MET (1.3%). Real-world evidence reveals a survival advantage of KRAS WT patients in overall cohorts as well as in patients treated with gemcitabine/nab-paclitaxel or 5-FU/oxaliplatin. CONCLUSIONS: KRAS WT PDAC represents 10.7% of PDAC and is enriched with targetable alterations, including immuno-oncologic markers. Identification of KRAS WT patients in clinical practice may expand therapeutic options in a clinically meaningful manner.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Adenocarcinoma/patologia , Idoso , Carcinoma Ductal Pancreático/patologia , DNA Helicases/genética , Feminino , Humanos , Masculino , Instabilidade de Microssatélites , Mutação , Proteínas Nucleares/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Fatores de Transcrição/genética , Neoplasias Pancreáticas
3.
Cancers (Basel) ; 13(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34638300

RESUMO

We performed a retrospective analysis of angiosarcoma (AS) genomic biomarkers and their associations with the site of origin in a cohort of 143 cases. Primary sites were head and neck (31%), breast (22%), extremity (11%), viscera (20%), skin at other locations (8%), and unknown (9%). All cases had Next Generation Sequencing (NGS) data with a 592 gene panel, and 53 cases had Whole Exome Sequencing (WES) data, which we used to study the microenvironment phenotype. The immunotherapy (IO) response biomarkers Tumor Mutation Burden (TMB), Microsatellite Instability (MSI), and PD-L1 status were the most frequently encountered alteration, present in 36.4% of the cohort and 65% of head and neck AS (H/N-AS) (p < 0.0001). In H/N-AS, TMB-High was seen in 63.4% of cases (p < 0.0001) and PDL-1 positivity in 33% of cases. The most common genetic alterations were TP53 (29%), MYC amplification (23%), ARID1A (17%), POT1 (16%), and ATRX (13%). H/N-AS cases had predominantly mutations in TP53 (50.0%, p = 0.0004), POT1 (40.5%, p < 0.0001), and ARID1A (33.3%, p = 0.5875). In breast AS, leading alterations were MYC amplification (63.3%, p < 0.0001), HRAS (16.1%, p = 0.0377), and PIK3CA (16.1%, p = 0.2352). At other sites, conclusions are difficult to generate due to the small number of cases. A microenvironment with a high immune signature, previously associated with IO response, was evenly distributed in 13% of the cases at different primary sites. Our findings can facilitate the design and optimization of therapeutic strategies for AS.

4.
NPJ Precis Oncol ; 5(1): 95, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34707195

RESUMO

Lymph nodes (LNs) and distant metastases can arise from independent subclones of the primary tumor. Herein, we characterized the molecular landscape and the differences between LNs, distant metastases and primary colorectal cancers (CRCs). Samples were analyzed using next generation sequencing (NGS, MiSeq on 47 genes, NextSeq on 592 genes) and immunohistochemistry. Tumor mutational burden (TMB) was calculated based on somatic nonsynonymous missense mutations, and microsatellite instability (MSI) was evaluated by NGS of known MSI loci. In total, 11,871 samples were examined, comprising primaries (N = 5862), distant (N = 5605) and LNs metastases (N = 404). The most frequently mutated genes in LNs were TP53 (72%), APC (61%), KRAS (39%), ARID1A (20%), PIK3CA (12%). LNs showed a higher mean TMB (13 mut/MB) vs distant metastases (9 mut/MB, p < 0.0001). TMB-high (≥17mut/MB) and MSI-H (8.8% and 6.9% vs 3.7%, p < 0.001 and p = 0.017, respectively) classifications were more frequent in primaries and LNs vs distant metastases (9.5% and 8.8% vs 4.2%, p < 0.001 and p = 0.001, respectively). TMB-high is significantly more common in LNs vs distant metastases and primaries (P < 0.0001), regardless MSI-H status. Overall, LNs showed significantly different rates of mutations in APC, KRAS, PI3KCA, KDM6A, and BRIP1 (p < 0.01) vs primaries, while presenting a distinct molecular profile compared to distant metastases. Our cohort of 30 paired samples confirmed the molecular heterogeneity between primaries, LNs, and distant metastases. Our data support the hypothesis that lymphatic and distant metastases harbor different mutational landscape. Our findings are hypothesis generating and need to be examined in prospective studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA