RESUMO
Gait analysis in unrestrained environments can be done with a single wearable ultrasonic sensor node on the lower limb and four fixed anchor nodes. The accuracy demanded by such systems is very high. Chirp signals can provide better ranging and localization performance in ultrasonic systems. However, we cannot neglect the multi-path effect in typical indoor environments for ultrasonic signals. The multi-path components closer to the line of sight component cannot be identified during correlation reception which leads to errors in the estimated range and which in turn affects the localization and tracking performance. We propose a novel method to reduce the multi-path effect in ultrasonic sensor networks in typical indoor environments. A gait analysis system with one mobile node attached to the lower limb was designed to test the performance of the proposed system during an indoor treadmill walking experiment. An optical motion capture system was used as a benchmark for the experiments. The proposed method gave better tracking accuracy compared to conventional coherent receivers. The static measurements gave 2.45 mm standard deviation compared to 10.45 mm using the classical approach. The RMSE between the ultrasonic gait analysis system and the reference system improved from 28.70 mm to 22.28 mm. The gait analysis system gave good performance for extraction of spatial and temporal parameters.
Assuntos
Análise da Marcha/métodos , Marcha/fisiologia , Fenômenos Biomecânicos , Análise da Marcha/instrumentação , Humanos , Ultrassom , Dispositivos Eletrônicos VestíveisRESUMO
Ranging based on ultrasonic sensors can be used for tracking wearable mobile nodes accurately for a long duration and can be a cost-effective method for human movement analysis in rehabilitation clinics. In this paper, we present a Doppler-tolerant ultrasonic multiple access localization system to analyze gait parameters in human subjects. We employ multiple access methods using linear chirp wave-forms and narrow-band piezoelectric transducers. A Doppler shift compensation Technique is also incorporated without compromising on the tracking accuracy. The system developed was used for tracking the trajectory of both lower limbs of five healthy adults during a treadmill walk. An optical motion capture system was used as the reference to compare the performance. The average Root Mean Square Error values between the 3D coordinates estimated from the proposed system and the reference system while tracking both lower limbs during treadmill walk experiment by 5 subjects were found to be 16.75, 14.68 and 20.20 mm respectively along X, Y and Z-directions. Errors in the estimation of spatial and temporal parameters from the proposed system were also quantified. These promising results show that narrowband ultrasonic sensors can be utilized to accurately track more than one mobile node for human gait analysis.
Assuntos
Marcha/fisiologia , Ultrassom/métodos , Dispositivos Eletrônicos Vestíveis , Adulto , Feminino , Humanos , Perna (Membro)/fisiologia , Masculino , TransdutoresRESUMO
This paper presents a chirp based ultrasonic positioning system (UPS) using orthogonal chirp waveforms. In the proposed method, multiple transmitters can simultaneously transmit chirp signals, as a result, it can efficiently utilize the entire available frequency spectrum. The fundamental idea behind the proposed multiple access scheme is to utilize the oversampling methodology of orthogonal frequency-division multiplexing (OFDM) modulation and orthogonality of the discrete frequency components of a chirp waveform. In addition, the proposed orthogonal chirp waveforms also have all the advantages of a classical chirp waveform. Firstly, the performance of the waveforms is investigated through correlation analysis and then, in an indoor environment, evaluated through simulations and experiments for ultrasonic (US) positioning. For an operational range of approximately 1000 mm, the positioning root-mean-square-errors (RMSEs) &90% error were 4.54 mm and 6.68 mm respectively.