Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Vaccines (Basel) ; 11(7)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37514995

RESUMO

The 2022 global outbreaks of monkeypox virus (MPXV) and increased human-to-human transmission calls for the urgent development of countermeasures to protect people who cannot benefit from vaccination. Here, we describe the development of glycovariants of 7D11, a neutralizing monoclonal IgG antibody (mAb) directed against the L1 transmembrane protein of the related vaccinia virus, in a plant-based system as a potential therapeutic against the current MPVX outbreak. Our results indicated that 7D11 mAb quickly accumulates to high levels within a week after gene introduction to plants. Plant-produced 7D11 mAb assembled correctly into the tetrameric IgG structure and can be easily purified to homogeneity. 7D11 mAb exhibited a largely homogeneous N-glycosylation profile, with or without plant-specific xylose and fucose residues, depending on the expression host, namely wild-type or glycoengineered plants. Plant-made 7D11 retained specific binding to its antigen and displayed a strong neutralization activity against MPXV, as least as potent as the reported activity against vaccinia virus. Our study highlights the utility of anti-L1 mAbs as MPXV therapeutics, and the use of glycoengineered plants to develop mAb glycovariants for potentially enhancing the efficacy of mAbs to combat ever-emerging/re-emerging viral diseases.

2.
Sci Signal ; 16(776): eabq0837, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36917643

RESUMO

Cellular stress granules arise in cells subjected to stress and promote cell survival. A cellular protein that localizes to stress granules is Z-DNA-binding protein 1 (ZBP1), which plays a major role in necroptosis, a programmed cell death pathway mediated by the kinase RIPK3. Here, we showed that the stress granule inducer arsenite activated RIPK3-dependent necroptosis. This pathway required ZBP1, which localized to arsenite-induced stress granules. RIPK3 localized to stress granules in the presence of ZBP1, leading to the formation of ZBP1-RIPK3 necrosomes, phosphorylation of the RIPK3 effector MLKL, and execution of necroptosis. Cells that did not form stress granules did not induce necroptosis in response to arsenite. Together, these results show that arsenite induces ZBP1-mediated necroptosis in a manner dependent on stress granule formation.


Assuntos
Arsenitos , Grânulos de Estresse , Necroptose , Arsenitos/farmacologia , Apoptose , Proteínas de Ligação a DNA
3.
Vaccines (Basel) ; 10(8)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35893821

RESUMO

The Omicron SARS-CoV-2 variant has been designated as a variant of concern because its spike protein is heavily mutated. In particular, the Omicron spike is mutated at five positions (K417, N440, E484, Q493, and N501) that have been associated with escape from neutralizing antibodies induced by either infection with or immunization against the early Washington strain of SARS-CoV-2. The mouse-adapted strain of SARS-CoV-2, SARS2-N501YMA30, contains a spike that is also heavily mutated, with mutations at four of the five positions in the Omicron spike associated with neutralizing antibody escape (K417, E484, Q493, and N501). In this manuscript, we show that intranasal immunization with a pre-fusion stabilized Washington strain spike, expressed from a highly attenuated, replication-competent vaccinia virus construct, NYVAC-KC, fully protected mice against symptoms and death from SARS2-N501YMA30. Similarly, immunization by scarification on the skin fully protected against death, but not from mild disease. This data demonstrates that the Washington strain spike, when expressed from a highly attenuated, replication-competent poxvirus-administered without parenteral injection-can fully protect against the heavily mutated mouse-adapted SARS2-N501YMA30.

4.
Biomedicines ; 10(2)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35203445

RESUMO

Poxviridae have developed a plethora of strategies to evade innate and adaptive immunity. In this review, we focused on the vaccinia virus E3 protein, encoded by the E3L gene. E3 is present within the Chordopoxvirinae subfamily (with the exception of the avipoxviruses and molluscum contagiosum virus) and displays pleiotropic effects on the innate immune system. Initial studies identified E3 as a double-stranded RNA (dsRNA)-binding protein (through its C terminus), able to inhibit the activation of protein kinase dependent on RNA (PKR) and the 2'5'-oligoadenylate synthetase (OAS)/RNase L pathway, rendering E3 a protein counteracting the type I interferon (IFN) system. In recent years, N-terminal mutants of E3 unable to bind to Z-form nucleic acids have been shown to induce the cellular death pathway necroptosis. This pathway was dependent on host IFN-inducible Z-DNA-binding protein 1 (ZBP1); full-length E3 is able to inhibit ZBP1-mediated necroptosis. Binding to what was identified as Z-RNA has emerged as a novel mechanism of counteracting the type I IFN system and has broadened our understanding of innate immunity against viral infections. This article gives an overview of the studies leading to our understanding of the vaccinia virus E3 protein function and its involvement in viral pathogenesis. Furthermore, a short summary of other viral systems is provided.

5.
bioRxiv ; 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34909775

RESUMO

The Omicron SARS-CoV-2 variant has been designated a variant of concern because its spike protein is heavily mutated. In particular, Omicron spike is mutated at 5 positions (K417, N440, E484, Q493 and N501) that have been associated with escape from neutralizing antibodies induced by either infection with or immunization against the early Washington strain of SARS-CoV-2. The mouse-adapted strain of SARS-CoV-2, SARS2-N501Y MA30 , contains a spike that is also heavily mutated, with mutations at 4 of the 5 positions in Omicron spike associated with neutralizing antibody escape (K417, E484, Q493 and N501). In this manuscript we show that intranasal immunization with a pre-fusion stabilized Washington strain spike, expressed from a highly attenuated, replication-competent vaccinia virus construct, NYVAC-KC, fully protected mice against disease and death from SARS2-N501Y MA30 . Similarly, immunization by scarification on the skin fully protected against death, but not from mild disease. This data demonstrates that Washington strain spike, when expressed from a highly attenuated, replication-competent poxvirus, administered without parenteral injection can fully protect against the heavily mutated mouse-adapted SARS2-N501Y MA30 .

8.
J Virol ; 93(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30429340

RESUMO

As part of the continuing effort to develop an effective HIV vaccine, we generated a poxviral vaccine vector (previously described) designed to improve on the results of the RV144 phase III clinical trial. The construct, NYVAC-KC, is a replication-competent, attenuated recombinant of the vaccinia virus strain NYVAC. NYVAC is a vector that has been used in many previous clinical studies but is replication deficient. Here, we report a side-by-side comparison of replication-restricted NYVAC and replication-competent NYVAC-KC in a nonhuman primate study, which utilized a prime-boost regimen similar to that of RV144. NYVAC-C and NYVAC-C-KC express the HIV-1 antigens gp140, and Gag/Gag-Pol-Nef-derived virus-like particles (VLPs) from clade C and were used as the prime, with recombinant virus plus envelope protein used as the boost. In nearly every T and B cell immune assay against HIV-1, including neutralization and antibody binding, NYVAC-C-KC induced a greater immune response than NYVAC-C, indicating that replication competence in a poxvirus may improve upon the modestly successful regimen used in the RV144 clinical trial.IMPORTANCE Though the RV144 phase III clinical trial showed promise that an effective vaccine against HIV-1 is possible, a successful vaccine will require improvement over the vaccine candidate (ALVAC) used in the RV144 study. With that goal in mind, we have tested in nonhuman primates an attenuated but replication-competent vector, NYVAC-KC, in direct comparison to its parental vector, NYVAC, which is replication restricted in human cells, similar to the ALVAC vector used in RV144. We have utilized a prime-boost regimen for administration of the vaccine candidate that is similar to the one used in the RV144 study. The results of this study indicate that a replication-competent poxvirus vector may improve upon the effectiveness of the RV144 clinical trial vaccine candidate.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Antígenos HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Vacinas Virais/administração & dosagem , Replicação Viral , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Anti-HIV/sangue , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , Humanos , Macaca mulatta , Masculino , Vacinação , Vaccinia virus/imunologia , Vacinas Virais/imunologia
9.
J Virol ; 93(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30429343

RESUMO

The use of heterologous immunization regimens and improved vector systems has led to increases in immunogenicity of HIV-1 vaccine candidates in nonhuman primates. In order to resolve interrelations between different delivery modalities, three different poxvirus boost regimens were compared. Three groups of rhesus macaques were each primed with the same DNA vaccine encoding Gag, Pol, Nef, and gp140. The groups were then boosted with either the vaccinia virus strain NYVAC or a variant with improved replication competence in human cells, termed NYVAC-KC. The latter was administered either by scarification or intramuscularly. Finally, macaques were boosted with adjuvanted gp120 protein to enhance humoral responses. The regimen elicited very potent CD4+ and CD8+ T cell responses in a well-balanced manner, peaking 2 weeks after the boost. T cells were broadly reactive and polyfunctional. All animals exhibited antigen-specific humoral responses already after the poxvirus boost, which further increased following protein administration. Polyclonal reactivity of IgG antibodies was highest against HIV-1 clade C Env proteins, with considerable cross-reactivity to other clades. Substantial effector functional activities (antibody-dependent cell-mediated cytotoxicity and antibody-dependent cell-mediated virus inhibition) were observed in serum obtained after the last protein boost. Notably, major differences between the groups were absent, indicating that the potent priming induced by the DNA vaccine initially framed the immune responses in such a way that the subsequent boosts with NYVAC and protein led only to an increase in the response magnitudes without skewing the quality. This study highlights the importance of selecting the best combination of vector systems in heterologous prime-boost vaccination regimens.IMPORTANCE The evaluation of HIV vaccine efficacy trials indicates that protection would most likely correlate with a polyfunctional immune response involving several effector functions from all arms of the immune system. Heterologous prime-boost regimens have been shown to elicit vigorous T cell and antibody responses in nonhuman primates that, however, qualitatively and quantitatively differ depending on the respective vector systems used. The present study evaluated a DNA prime and poxvirus and protein boost regimen and compared how two poxvirus vectors with various degrees of replication capacity and two different delivery modalities-conventional intramuscular delivery and percutaneous delivery by scarification-impact several immune effectors. It was found that despite the different poxvirus boosts, the overall immune responses in the three groups were similar, suggesting the potent DNA priming as the major determining factor of immune responses. These findings emphasize the importance of selecting optimal priming agents in heterologous prime-boost vaccination settings.


Assuntos
Antígenos HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Linfócitos T/imunologia , Vacinas de DNA/administração & dosagem , Vacinas Virais/imunologia , Replicação Viral , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Anti-HIV/sangue , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , Humanos , Macaca mulatta , Masculino , Poxviridae , Vacinação , Vacinas de DNA/imunologia , Vaccinia virus/imunologia
10.
Proc Natl Acad Sci U S A ; 114(43): 11506-11511, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29073079

RESUMO

Vaccinia virus (VACV) encodes an innate immune evasion protein, E3, which contains an N-terminal Z-nucleic acid binding (Zα) domain that is critical for pathogenicity in mice. Here we demonstrate that the N terminus of E3 is necessary to inhibit an IFN-primed virus-induced necroptosis. VACV deleted of the Zα domain of E3 (VACV-E3LΔ83N) induced rapid RIPK3-dependent cell death in IFN-treated L929 cells. Cell death was inhibited by the RIPK3 inhibitor, GSK872, and infection with this mutant virus led to phosphorylation and aggregation of MLKL, the executioner of necroptosis. In 293T cells, induction of necroptosis depended on expression of RIPK3 as well as the host-encoded Zα domain-containing DNA sensor, DAI. VACV-E3LΔ83N is attenuated in vivo, and pathogenicity was restored in either RIPK3- or DAI-deficient mice. These data demonstrate that the N terminus of the VACV E3 protein prevents DAI-mediated induction of necroptosis.


Assuntos
DNA Forma Z/metabolismo , Glicoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Vaccinia virus/metabolismo , Proteínas Virais/metabolismo , Animais , Caspases/metabolismo , Morte Celular , Linhagem Celular , Sobrevivência Celular , DNA Forma Z/química , Glicoproteínas/genética , Humanos , Imunidade Inata , Interferon Tipo I/química , Interferon Tipo I/farmacologia , Camundongos , Domínios Proteicos , Proteínas de Ligação a RNA/química , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Vaccinia virus/imunologia , Vaccinia virus/patogenicidade , Proteínas Virais/química , Virulência
11.
Virology ; 507: 242-256, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28458036

RESUMO

Showing modest efficacy, the RV144 HIV-1 vaccine clinical trial utilized a non-replicating canarypox viral vector and a soluble gp120 protein boost. Here we built upon the RV144 strategy by developing a novel combination of a replicating, but highly-attenuated Vaccinia virus vector, NYVAC-KC, and plant-produced HIV-1 virus-like particles (VLPs). Both components contained the full-length Gag and a membrane anchored truncated gp41 presenting the membrane proximal external region with its conserved broadly neutralizing epitopes in the pre-fusion conformation. We tested different prime/boost combinations of these components in mice and showed that the group primed with NYVAC-KC and boosted with both the viral vectors and plant-produced VLPs have the most robust Gag-specific CD8 T cell responses, at 12.7% of CD8 T cells expressing IFN-γ in response to stimulation with five Gag epitopes. The same immunization group elicited the best systemic and mucosal antibody responses to Gag and dgp41 with a bias towards IgG1.


Assuntos
Vacinas contra a AIDS/administração & dosagem , Proteína gp41 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Imunização/métodos , Nicotiana/metabolismo , Vaccinia virus/fisiologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Formação de Anticorpos , Feminino , Vetores Genéticos/genética , Vetores Genéticos/fisiologia , Anticorpos Anti-HIV/imunologia , Proteína gp41 do Envelope de HIV/administração & dosagem , Proteína gp41 do Envelope de HIV/genética , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , HIV-1/genética , Humanos , Imunização Secundária , Camundongos , Camundongos Endogâmicos C57BL , Nicotiana/genética , Nicotiana/virologia , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vaccinia virus/genética , Replicação Viral , Produtos do Gene gag do Vírus da Imunodeficiência Humana/administração & dosagem , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
12.
J Virol ; 91(9)2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28179536

RESUMO

The nonreplicating attenuated poxvirus vector NYVAC expressing clade C(CN54) HIV-1 Env(gp120) and Gag-Pol-Nef antigens (NYVAC-C) showed limited immunogenicity in phase I clinical trials. To enhance the capacity of the NYVAC vector to trigger broad humoral responses and a more balanced activation of CD4+ and CD8+ T cells, here we compared the HIV-1-specific immunogenicity elicited in nonhuman primates immunized with two replicating NYVAC vectors that have been modified by the insertion of the K1L and C7L vaccinia virus host range genes and express the clade C(ZM96) trimeric HIV-1 gp140 protein or a Gag(ZM96)-Pol-Nef(CN54) polyprotein as Gag-derived virus-like particles (termed NYVAC-C-KC). Additionally, one NYVAC-C-KC vector was generated by deleting the viral gene B19R, an inhibitor of the type I interferon response (NYVAC-C-KC-ΔB19R). An immunization protocol mimicking that of the RV144 phase III clinical trial was used. Two groups of macaques received two doses of the corresponding NYVAC-C-KC vectors (weeks 0 and 4) and booster doses with NYVAC-C-KC vectors plus the clade C HIV-1 gp120 protein (weeks 12 and 24). The two replicating NYVAC-C-KC vectors induced enhanced and similar HIV-1-specific CD4+ and CD8+ T cell responses, similar levels of binding IgG antibodies, low levels of IgA antibodies, and high levels of antibody-dependent cellular cytotoxicity responses and HIV-1-neutralizing antibodies. Small differences within the NYVAC-C-KC-ΔB19R group were seen in the magnitude of CD4+ and CD8+ T cells, the induction of some cytokines, and the neutralization of some HIV-1 isolates. Thus, replication-competent NYVAC-C-KC vectors acquired relevant immunological properties as vaccine candidates against HIV/AIDS, and the viral B19 molecule exerts some control of immune functions.IMPORTANCE It is of special importance to find a safe and effective HIV/AIDS vaccine that can induce strong and broad T cell and humoral immune responses correlating with HIV-1 protection. Here we developed novel replicating poxvirus NYVAC-based HIV/AIDS vaccine candidates expressing clade C HIV-1 antigens, with one of them lacking the vaccinia virus B19 protein, an inhibitor of the type I interferon response. Immunization of nonhuman primates with these novel NYVAC-C-KC vectors and the protein component gp120 elicited high levels of T cell and humoral immune responses, with the vector containing a deletion in B19R inducing a trend toward a higher magnitude of CD4+ and CD8+ T cell responses and neutralization of some HIV-1 strains. These poxvirus vectors could be considered HIV/AIDS vaccine candidates based on their activation of potential immune correlates of protection.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/sangue , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Anticorpos Anti-HIV/sangue , Proteína gp120 do Envelope de HIV/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Vacinas contra a AIDS/genética , Animais , Anticorpos Neutralizantes/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Anticorpos Anti-HIV/imunologia , Antígenos HIV/imunologia , Infecções por HIV/prevenção & controle , Interferon Tipo I/genética , Macaca mulatta , Masculino , Receptores de Interferon/genética , Receptores de Interferon/imunologia , Vacinação , Vaccinia virus/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
13.
Virology ; 497: 125-135, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27467578

RESUMO

Monkeypox virus (MPXV) infection fails to activate the host anti-viral protein, PKR, despite lacking a full-length homologue of the vaccinia virus (VACV) PKR inhibitor, E3. Since PKR can be activated by dsRNA produced during a viral infection, we have analyzed the accumulation of dsRNA in MPXV-infected cells. MPXV infection led to less accumulation of dsRNA than VACV infection. Because in VACV infections accumulation of abnormally low amounts of dsRNA is associated with mutations that lead to resistance to the anti-poxvirus drug isatin beta-thiosemicarbazone (IBT), we investigated the effects of treatment of MPXV-infected cells with IBT. MPXV infection was eight-fold more resistant to IBT than wild-type vaccinia virus (wtVACV). These results demonstrate that MPXV infection leads to the accumulation of less dsRNA than wtVACV, which in turn likely leads to a decreased capacity for activation of the dsRNA-dependent host enzyme, PKR.


Assuntos
Antivirais/farmacologia , Farmacorresistência Viral , Monkeypox virus/efeitos dos fármacos , Monkeypox virus/fisiologia , RNA de Cadeia Dupla/biossíntese , Vaccinia virus/efeitos dos fármacos , Vaccinia virus/fisiologia , Linhagem Celular , DNA Viral , Células HeLa , Humanos , Fases de Leitura Aberta , Transcrição Gênica , Proteínas Virais/genética , Virulência/genética , Replicação Viral
14.
Viruses ; 8(6)2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27275831

RESUMO

Cyanovirin-N (CV-N) is an antiviral lectin with potent activity against enveloped viruses, including HIV. The mechanism of action involves high affinity binding to mannose-rich glycans that decorate the surface of enveloped viruses. In the case of HIV, antiviral activity of CV-N is postulated to require multivalent interactions with envelope protein gp120, achieved through a pseudo-repeat of sequence that adopts two near-identical glycan-binding sites, and possibly involves a 3D-domain-swapped dimeric form of CV-N. Here, we present a covalent dimer of CV-N that increases the number of active glycan-binding sites, and we characterize its ability to recognize four glycans in solution. A CV-N variant was designed in which two native repeats were separated by the "nested" covalent insertion of two additional repeats of CV-N, resulting in four possible glycan-binding sites. The resulting Nested CV-N folds into a wild-type-like structure as assessed by circular dichroism and NMR spectroscopy, and displays high thermal stability with a Tm of 59 °C, identical to WT. All four glycan-binding domains encompassed by the sequence are functional as demonstrated by isothermal titration calorimetry, which revealed two sets of binding events to dimannose with dissociation constants Kd of 25 µM and 900 µM, assigned to domains B and B' and domains A and A' respectively. Nested CV-N displays a slight increase in activity when compared to WT CV-N in both an anti-HIV cellular assay and a fusion assay. This construct conserves the original binding specifityies of domain A and B, thus indicating correct fold of the two CV-N repeats. Thus, rational design can be used to increase multivalency in antiviral lectins in a controlled manner.


Assuntos
Antivirais/farmacologia , Proteínas de Bactérias/farmacologia , Proteínas de Transporte/farmacologia , Proteínas Recombinantes/farmacologia , Antivirais/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Dicroísmo Circular , Espectroscopia de Ressonância Magnética , Polissacarídeos/metabolismo , Ligação Proteica , Dobramento de Proteína , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Temperatura
15.
J Virol ; 89(20): 10489-99, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26246580

RESUMO

UNLABELLED: The vaccinia virus (VACV) E3 protein has been shown to be important for blocking activation of the cellular innate immune system and allowing viral replication to occur unhindered. Mutation or deletion of E3L severely affects viral host range and pathogenesis. While the monkeypox virus (MPXV) genome encodes a homologue of the VACV E3 protein, encoded by the F3L gene, the MPXV gene is predicted to encode a protein with a truncation of 37 N-terminal amino acids. VACV with a genome encoding a similarly truncated E3L protein (VACV-E3LΔ37N) has been shown to be attenuated in mouse models, and infection with VACV-E3LΔ37N has been shown to lead to activation of the host antiviral protein kinase R pathway. In this report, we present data demonstrating that, despite containing a truncated E3 homologue, MPXV phenotypically resembles a wild-type (wt) VACV rather than VACV-E3LΔ37N. Thus, MPXV appears to contain a gene or genes that can suppress the phenotypes associated with an N-terminal truncation in E3. The suppression maps to sequences outside F3L, suggesting that the suppression is extragenic in nature. Thus, MPXV appears to have evolved mechanisms to minimize the effects of partial inactivation of its E3 homologue. IMPORTANCE: Poxviruses have evolved to have many mechanisms to evade host antiviral innate immunity; these mechanisms may allow these viruses to cause disease. Within the family of poxviruses, variola virus (which causes smallpox) is the most pathogenic, while monkeypox virus is intermediate in pathogenicity between vaccinia virus and variola virus. Understanding the mechanisms of monkeypox virus innate immune evasion will help us to understand the evolution of poxvirus innate immune evasion capabilities, providing a better understanding of how poxviruses cause disease.


Assuntos
Evasão da Resposta Imune , Imunidade Inata , Interferon Tipo I/imunologia , Monkeypox virus/genética , Proteínas de Ligação a RNA/genética , Vaccinia virus/genética , Proteínas Virais/genética , Sequência de Aminoácidos , Animais , Evolução Biológica , Linhagem Celular , Chlorocebus aethiops , Cricetulus , Células Epiteliais/imunologia , Células Epiteliais/virologia , Expressão Gênica , Células HeLa , Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno , Humanos , Interferon Tipo I/genética , Dados de Sequência Molecular , Monkeypox virus/imunologia , Monkeypox virus/patogenicidade , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/imunologia , Coelhos , Alinhamento de Sequência , Transdução de Sinais , Vaccinia virus/imunologia , Vaccinia virus/patogenicidade , Células Vero , Proteínas Virais/química , Proteínas Virais/imunologia , Replicação Viral
16.
J Virol ; 89(2): 970-88, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25355891

RESUMO

UNLABELLED: The generation of vaccines against HIV/AIDS able to induce long-lasting protective immunity remains a major goal in the HIV field. The modest efficacy (31.2%) against HIV infection observed in the RV144 phase III clinical trial highlighted the need for further improvement of HIV vaccine candidates, formulation, and vaccine regimen. In this study, we have generated two novel NYVAC vectors, expressing HIV-1 clade C gp140(ZM96) (NYVAC-gp140) or Gag(ZM96)-Pol-Nef(CN54) (NYVAC-Gag-Pol-Nef), and defined their virological and immunological characteristics in cultured cells and in mice. The insertion of HIV genes does not affect the replication capacity of NYVAC recombinants in primary chicken embryo fibroblast cells, HIV sequences remain stable after multiple passages, and HIV antigens are correctly expressed and released from cells, with Env as a trimer (NYVAC-gp140), while in NYVAC-Gag-Pol-Nef-infected cells Gag-induced virus-like particles (VLPs) are abundant. Electron microscopy revealed that VLPs accumulated with time at the cell surface, with no interference with NYVAC morphogenesis. Both vectors trigger specific innate responses in human cells and show an attenuation profile in immunocompromised adult BALB/c and newborn CD1 mice after intracranial inoculation. Analysis of the immune responses elicited in mice after homologous NYVAC prime/NYVAC boost immunization shows that recombinant viruses induced polyfunctional Env-specific CD4 or Gag-specific CD8 T cell responses. Antibody responses against gp140 and p17/p24 were elicited. Our findings showed important insights into virus-host cell interactions of NYVAC vectors expressing HIV antigens, with the activation of specific immune parameters which will help to unravel potential correlates of protection against HIV in human clinical trials with these vectors. IMPORTANCE: We have generated two novel NYVAC-based HIV vaccine candidates expressing HIV-1 clade C trimeric soluble gp140 (ZM96) and Gag(ZM96)-Pol-Nef(CN54) as VLPs. These vectors are stable and express high levels of both HIV-1 antigens. Gag-induced VLPs do not interfere with NYVAC morphogenesis, are highly attenuated in immunocompromised and newborn mice after intracranial inoculation, trigger specific innate immune responses in human cells, and activate T (Env-specific CD4 and Gag-specific CD8) and B cell immune responses to the HIV antigens, leading to high antibody titers against gp140. For these reasons, these vectors can be considered vaccine candidates against HIV/AIDS and currently are being tested in macaques and humans.


Assuntos
Vacinas contra a AIDS/imunologia , Vacinação/métodos , Vacinas de Partículas Semelhantes a Vírus/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/administração & dosagem , Vacinas contra a AIDS/genética , Animais , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Galinhas , Anticorpos Anti-HIV/sangue , Camundongos , Microscopia Eletrônica de Transmissão , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/ultraestrutura , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética
17.
PLoS One ; 8(10): e75921, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098405

RESUMO

BACKGROUND: Hepatitis C virus (HCV) coinfection was reported to negatively affect HIV disease and HIV infection has a deleterious effect on HCV-related liver disease. However, despite common occurrence of HCV/HIV coinfection little is known about the mechanisms of interactions between the two viruses. METHODS: We studied CD4+ and CD8+ T cell and CD19+ B cell apoptosis in 104 HIV-positive patients (56 were also HCV-positive) and in 22 HCV/HIV-coinfected patients treated for chronic hepatitis C with pegylated interferon and ribavirin. We also analyzed HCV/HIV coinfection in a Daudi B-cell line expressing CD4 and susceptible to both HCV and HIV infection. Apoptosis was measured by AnnexinV staining. RESULTS: HCV/HIV coinfected patients had lower CD4+ and CD8+ T cell apoptosis and higher CD19+ B cell apoptosis than those with HIV monoinfection. Furthermore, anti-HCV treatment of HCV/HIV coinfected patients was followed by an increase of CD4+ and CD8+ T cell apoptosis and a decrease of CD19+ B cell apoptosis. In the Daudi CD4+ cell line, presence of HCV infection facilitated HIV replication, however, decreased the rate of HIV-related cell death. CONCLUSION: In HCV/HIV coinfected patients T-cells were found to be destroyed at a slower rate than in HIV monoinfected patients. These results suggest that HCV is a molecular-level determinant in HIV disease.


Assuntos
Apoptose , Coinfecção/patologia , Infecções por HIV/patologia , Hepatite C/complicações , Adulto , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Linhagem Celular , Coinfecção/imunologia , Feminino , Infecções por HIV/imunologia , Humanos , Masculino
18.
PLoS One ; 6(11): e25674, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22096477

RESUMO

While as yet there is no vaccine against HIV/AIDS, the results of the phase III Thai trial (RV144) have been encouraging and suggest that further improvements of the prime/boost vaccine combination of a poxvirus and protein are needed. With this aim, in this investigation we have generated derivatives of the candidate vaccinia virus vaccine vector NYVAC with potentially improved functions. This has been achieved by the re-incorporation into the virus genome of two host range genes, K1L and C7L, in conjunction with the removal of the immunomodulatory viral molecule B19, an antagonist of type I interferon action. These novel virus vectors, referred to as NYVAC-C-KC and NYVAC-C-KC-ΔB19R, have acquired relevant biological characteristics, giving higher levels of antigen expression in infected cells, replication-competency in human keratinocytes and dermal fibroblasts, activation of selective host cell signal transduction pathways, and limited virus spread in tissues. Importantly, these replication-competent viruses have been demonstrated to maintain a highly attenuated phenotype.


Assuntos
Vetores Genéticos/genética , Vacinas Virais/genética , Vacinas Virais/imunologia , Animais , Apoptose/genética , Apoptose/fisiologia , Ciclo Celular/genética , Ciclo Celular/fisiologia , Células Cultivadas , Feminino , Proteína gp120 do Envelope de HIV/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase , Gravidez , Transdução de Sinais/genética , Proteínas Virais/genética , Replicação Viral/genética , Replicação Viral/fisiologia
19.
PLoS One ; 6(2): e16819, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21347234

RESUMO

Attenuated poxviruses are safe and capable of expressing foreign antigens. Poxviruses are applied in veterinary vaccination and explored as candidate vaccines for humans. However, poxviruses express multiple genes encoding proteins that interfere with components of the innate and adaptive immune response. This manuscript describes two strategies aimed to improve the immunogenicity of the highly attenuated, host-range restricted poxvirus NYVAC: deletion of the viral gene encoding type-I interferon-binding protein and development of attenuated replication-competent NYVAC. We evaluated these newly generated NYVAC mutants, encoding HIV-1 env, gag, pol and nef, for their ability to stimulate HIV-specific CD8 T-cell responses in vitro from blood mononuclear cells of HIV-infected subjects. The new vectors were evaluated and compared to the parental NYVAC vector in dendritic cells (DCs), RNA expression arrays, HIV gag expression and cross-presentation assays in vitro. Deletion of type-I interferon-binding protein enhanced expression of interferon and interferon-induced genes in DCs, and increased maturation of infected DCs. Restoration of replication competence induced activation of pathways involving antigen processing and presentation. Also, replication-competent NYVAC showed increased Gag expression in infected cells, permitting enhanced cross-presentation to HIV-specific CD8 T cells and proliferation of HIV-specific memory CD8 T-cells in vitro. The recombinant NYVAC combining both modifications induced interferon-induced genes and genes involved in antigen processing and presentation, as well as increased Gag expression. This combined replication-competent NYVAC is a promising candidate for the next generation of HIV vaccines.


Assuntos
Imunidade Adaptativa/genética , Engenharia Genética/métodos , Vetores Genéticos/genética , Imunidade Inata/genética , Imunização/métodos , Poxviridae/genética , Proteínas Virais/genética , Animais , Apresentação de Antígeno/genética , Antígeno B7-2/metabolismo , Proliferação de Células , Cricetinae , Reações Cruzadas/genética , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Deleção de Genes , Expressão Gênica , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , HIV-1/genética , HIV-1/fisiologia , Células HeLa , Humanos , Interferon-alfa/biossíntese , Poxviridae/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/virologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
20.
Antiviral Res ; 84(1): 1-13, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19563829

RESUMO

Vaccinia virus (VACV) has been used more extensively for human immunization than any other vaccine. For almost two centuries, VACV was employed to provide cross-protection against variola virus, the causative agent of smallpox, until the disease was eradicated in the late 1970s. Since that time, continued research on VACV has produced a number of modified vaccines with improved safety profiles. Attenuation has been achieved through several strategies, including sequential passage in an alternative host, deletion of specific genes or genetic engineering of viral genes encoding immunomodulatory proteins. Some highly attenuated third- and fourth-generation VACV vaccines are now being considered for stockpiling against a possible re-introduction of smallpox through bioterrorism. Researchers have also taken advantage of the ability of the VACV genome to accommodate additional genetic material to produce novel vaccines against a wide variety of infectious agents, including a recombinant VACV encoding the rabies virus glycoprotein that is administered orally to wild animals. This review provides an in-depth examination of these successive generations of VACV vaccines, focusing on how the understanding of poxviral replication and viral gene function permits the deliberate modification of VACV immunogenicity and virulence.


Assuntos
Vacina Antivariólica/história , Vaccinia virus/genética , Vaccinia virus/imunologia , Vacínia/prevenção & controle , Animais , Engenharia Genética , História do Século XX , História do Século XXI , Humanos , Vacina Antivariólica/genética , Vacina Antivariólica/imunologia , Vacínia/imunologia , Vacínia/virologia , Vaccinia virus/patogenicidade , Vaccinia virus/fisiologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA