Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Chem Rev ; 124(9): 5617-5667, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38661498

RESUMO

The quest to identify precious metal free hydrogen evolution reaction catalysts has received unprecedented attention in the past decade. In this Review, we focus our attention to recent developments in precious metal free hydrogen evolution reactions in acidic and alkaline electrolyte owing to their relevance to commercial and near-commercial low-temperature electrolyzers. We provide a detailed review and critical analysis of catalyst activity and stability performance measurements and metrics commonly deployed in the literature, as well as review best practices for experimental measurements (both in half-cell three-electrode configurations and in two-electrode device testing). In particular, we discuss the transition from laboratory-scale hydrogen evolution reaction (HER) catalyst measurements to those in single cells, which is a critical aspect crucial for scaling up from laboratory to industrial settings but often overlooked. Furthermore, we review the numerous catalyst design strategies deployed across the precious metal free HER literature. Subsequently, we showcase some of the most commonly investigated families of precious metal free HER catalysts; molybdenum disulfide-based, transition metal phosphides, and transition metal carbides for acidic electrolyte; nickel molybdenum and transition metal phosphides for alkaline. This includes a comprehensive analysis comparing the HER activity between several families of materials highlighting the recent stagnation with regards to enhancing the intrinsic activity of precious metal free hydrogen evolution reaction catalysts. Finally, we summarize future directions and provide recommendations for the field in this area of electrocatalysis.

2.
Nature ; 629(8010): 92-97, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38503346

RESUMO

Ammonia is crucial as a fertilizer and in the chemical industry and is considered to be a carbon-free fuel1. Ammonia electrosynthesis from nitrogen under ambient conditions offers an attractive alternative to the Haber-Bosch process2,3, and lithium-mediated nitrogen reduction represents a promising approach to continuous-flow ammonia electrosynthesis, coupling nitrogen reduction with hydrogen oxidation4. However, tetrahydrofuran, which is commonly used as a solvent, impedes long-term ammonia production owing to polymerization and volatility problems. Here we show that a chain-ether-based electrolyte enables long-term continuous ammonia synthesis. We find that a chain-ether-based solvent exhibits non-polymerization properties and a high boiling point (162 °C) and forms a compact solid-electrolyte interphase layer on the gas diffusion electrode, facilitating ammonia release in the gas phase and ensuring electrolyte stability. We demonstrate 300 h of continuous operation in a flow electrolyser with a 25 cm2 electrode at 1 bar pressure and room temperature, and achieve a current-to-ammonia efficiency of 64 ± 1% with a gas-phase ammonia content of approximately 98%. Our results highlight the crucial role of the solvent in long-term continuous ammonia synthesis.

3.
Science ; 383(6689): 1357-1363, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38513006

RESUMO

Over the past two decades, there has been growing interest in developing catalysts to enable Haber-Bosch ammonia synthesis under milder conditions than currently pertain. Rational catalyst design requires theoretical guidance and clear mechanistic understanding. Recently, a spin-mediated promotion mechanism was proposed to activate traditionally unreactive magnetic materials such as cobalt (Co) for ammonia synthesis by introducing hetero metal atoms bound to the active site of the catalyst surface. We combined theory and experiment to validate this promotion mechanism on a lanthanum (La)/Co system. By conducting model catalyst studies on Co single crystals and mass-selected Co nanoparticles at ambient pressure, we identified the active site for ammonia synthesis as the B5 site of Co steps with La adsorption. The turnover frequency of 0.47 ± 0.03 per second achieved on the La/Co system at 350°C and 1 bar surpasses those of other model catalysts tested under identical conditions.

4.
Phys Chem Chem Phys ; 26(12): 9253-9263, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38445363

RESUMO

Stability under reactive conditions poses a common challenge for cluster- and nanoparticle-based catalysts. Since the catalytic properties of <5 nm gold nanoparticles were first uncovered, optimizing their stability at elevated temperatures for CO oxidation has been a central theme. Here we report direct observations of improved stability of AuTiOx alloy nanoparticles for CO oxidation compared with pure Au nanoparticles on TiO2. The nanoparticles were synthesized using a magnetron sputtering, gas-phase aggregation cluster source, size-selected using a lateral time-of-flight mass filter and deposited onto TiO2-coated micro-reactors for thermocatalytic activity measurements of CO oxidation. The AuTiOx nanoparticles exhibited improved stability at elevated temperatures, which is attributed to a self-anchoring interaction with the TiO2 substrate. The structure of the AuTiOx nanoparticles was also investigated in detail using ion scattering spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. The measurements showed that the alloyed nanoparticles exhibited a core-shell structure with an Au core surrounded by an AuTiOx shell. The structure of these alloy nanoparticles appeared stable even at temperatures up to 320 °C under reactive conditions, for more than 140 hours. The work presented confirms the possibility of tuning catalytic activity and stability via nanoparticle alloying and self-anchoring on TiO2 substrates, and highlights the importance of complementary characterization techniques to investigate and optimize nanoparticle catalyst designs of this nature.

5.
Nat Commun ; 15(1): 2417, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499554

RESUMO

Ammonia is a crucial component in the production of fertilizers and various nitrogen-based compounds. Now, the lithium-mediated nitrogen reduction reaction (Li-NRR) has emerged as a promising approach for ammonia synthesis at ambient conditions. The proton shuttle plays a critical role in the proton transfer process during Li-NRR. However, the structure-activity relationship and design principles for effective proton shuttles have not yet been established in practical Li-NRR systems. Here, we propose a general procedure for verifying a true proton shuttle and established design principles for effective proton shuttles. We systematically evaluate several classes of proton shuttles in a continuous-flow reactor with hydrogen oxidation at the anode. Among the tested proton shuttles, phenol exhibits the highest Faradaic efficiency of 72 ± 3% towards ammonia, surpassing that of ethanol, which has been commonly used so far. Experimental investigations including operando isotope-labelled mass spectrometry proved the proton-shuttling capability of phenol. Further mass transport modeling sheds light on the mechanism.

6.
J Am Chem Soc ; 146(3): 2015-2023, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38196113

RESUMO

Understanding the size-dependent behavior of nanoparticles is crucial for optimizing catalytic performance. We investigate the differences in selectivity of size-selected gold nanoparticles for CO2 electroreduction with sizes ranging from 1.5 to 6.5 nm. Our findings reveal an optimal size of approximately 3 nm that maximizes selectivity toward CO, exhibiting up to 60% Faradaic efficiency at low potentials. High-resolution transmission electron microscopy reveals different shapes for the particles and suggests that multiply twinned nanoparticles are favorable for CO2 reduction to CO. Our analysis shows that twin boundaries pin 8-fold coordinated surface sites and in turn suggests that a variation of size and shape to optimize the abundance of 8-fold coordinated sites is a viable path for optimizing the CO2 electrocatalytic reduction to CO. This work contributes to the advancement of nanocatalyst design for achieving tunable selectivity for CO2 conversion into valuable products.

7.
Nat Mater ; 23(1): 101-107, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37884670

RESUMO

Ammonia (NH3) is a key commodity chemical for the agricultural, textile and pharmaceutical industries, but its production via the Haber-Bosch process is carbon-intensive and centralized. Alternatively, an electrochemical method could enable decentralized, ambient NH3 production that can be paired with renewable energy. The first verified electrochemical method for NH3 synthesis was a process mediated by lithium (Li) in organic electrolytes. So far, however, elements other than Li remain unexplored in this process for potential benefits in efficiency, reaction rates, device design, abundance and stability. In our demonstration of a Li-free system, we found that calcium can mediate the reduction of nitrogen for NH3 synthesis. We verified the calcium-mediated process using a rigorous protocol and achieved an NH3 Faradaic efficiency of 40 ± 2% using calcium tetrakis(hexafluoroisopropyloxy)borate (Ca[B(hfip)4]2) as the electrolyte. Our results offer the possibility of using abundant materials for the electrochemical production of NH3, a critical chemical precursor and promising energy vector.

8.
ChemSusChem ; 16(22): e202301011, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37681646

RESUMO

The lithium-mediated nitrogen reduction reaction (Li-NRR) is a promising method for decentralized ammonia synthesis using renewable energy. An organic electrolyte is utilized to combat the competing hydrogen evolution reaction, and lithium is plated to activate the inert N2 molecule. Ethanol is commonly used as a proton shuttle to provide hydrogen to the activated nitrogen. In this study, we investigate the role of ethanol as a proton shuttle in an electrolyte containing tetrahydrofuran and 0.2 M lithium perchlorate. Particularly designed electrochemical experiments show that ethanol is necessary for a good solid-electrolyte interphase but not for the synthesis of ammonia. In addition, electrochemical quartz crystal microbalance (EQCM) demonstrates that the SEI formation at the onset of lithium plating is of specific importance. Chemical batch synthesis of ammonia combined with real-time mass spectrometry confirms that protons can be shuttled from the anode to the cathode by other species even without ethanol. Moreover, it raises questions regarding the electrochemical nature of Li-NRR. Finally, we discuss electrolyte stability and electrochemical electrode potentials, highlighting the role of ethanol on electrolyte degradation.

9.
Rev Sci Instrum ; 94(3): 033909, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37012796

RESUMO

Despite numerous advancements in synthesizing photoactive materials, the evaluation of their catalytic performance remains challenging since their fabrication often involves tedious strategies, yielding only low quantities in the µ-gram scale. In addition, these model catalysts exhibit different forms, such as powders or film(-like) structures grown on various supporting materials. Herein, we present a versatile gas phase µ-photoreactor, compatible with different catalyst morphologies, which is, in contrast to existing systems, re-openable and -useable, allowing not only post-characterization of the photocatalytic material but also enabling catalyst screening studies in short experimental time intervals. Sensitive and time-resolved reaction monitoring at ambient pressure is realized by a lid-integrated capillary, transmitting the entire gas flow from the reactor chamber to a quadrupole mass spectrometer. Due to the microfabrication of the lid from borosilicate as base material, 88% of the geometrical area can be illuminated by a light source, further enhancing sensitivity. Gas dependent flow rates through the capillary were experimentally determined to be 1015-1016 molecules s-1, and in combination with a reactor volume of 10.5 µl, this results in residence times below 40 s. Furthermore, the reactor volume can easily be altered by adjusting the height of the polymeric sealing material. The successful operation of the reactor is demonstrated by selective ethanol oxidation over Pt-loaded TiO2 (P25), which serves to exemplify product analysis from dark-illumination difference spectra.

10.
ACS Energy Lett ; 8(3): 1607-1612, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36937791

RESUMO

Working with non-noble electrocatalysts poses significant experimental challenges to unambiguously evaluate their intrinsic activity and characterize their working state and possible structural and compositional changes before, during, and after activity testing. Despite the vast number of studies on non-noble catalysts, these issues are still not addressed sufficiently-hindering significant progress in the field. In this Perspective, we present pitfalls and challenges when working with non-noble-metal-based electrocatalysts from catalyst synthesis, over electrochemical testing, to post-reaction characterization, and suggest potential solutions to overcome these difficulties. We believe that reliable measurements of the intrinsic activity of non-noble-metal-based electrocatalysts will greatly enhance our understanding of electrocatalysis in general and is a prerequisite for developing more active and selective electrocatalysts.

11.
Science ; 379(6633): 707-712, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36795804

RESUMO

Ammonia is a critical component in fertilizers, pharmaceuticals, and fine chemicals and is an ideal, carbon-free fuel. Recently, lithium-mediated nitrogen reduction has proven to be a promising route for electrochemical ammonia synthesis at ambient conditions. In this work, we report a continuous-flow electrolyzer equipped with 25-square centimeter-effective area gas diffusion electrodes wherein nitrogen reduction is coupled with hydrogen oxidation. We show that the classical catalyst platinum is not stable for hydrogen oxidation in the organic electrolyte, but a platinum-gold alloy lowers the anode potential and avoids the decremental decomposition of the organic electrolyte. At optimal operating conditions, we achieve, at 1 bar, a faradaic efficiency for ammonia production of up to 61 ± 1% and an energy efficiency of 13 ± 1% at a current density of -6 milliamperes per square centimeter.

12.
Joule ; 6(9): 2083-2101, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36188748

RESUMO

Ammonia is a large-scale commodity essential to fertilizer production, but the Haber-Bosch process leads to massive emissions of carbon dioxide. Electrochemical ammonia synthesis is an attractive alternative pathway, but the process is still limited by low ammonia production rate and faradaic efficiency. Herein, guided by our theoretical model, we present a highly efficient lithium-mediated process enabled by using different lithium salts, leading to the formation of a uniform solid-electrolyte interphase (SEI) layer on a porous copper electrode. The uniform lithium-fluoride-enriched SEI layer provides an ammonia production rate of 2.5 ± 0.1 µmol s-1 cmgeo -2 at a current density of -1 A cmgeo -2 with 71% ± 3% faradaic efficiency under 20 bar nitrogen. Experimental X-ray analysis reveals that the lithium tetrafluoroborate electrolyte induces the formation of a compact and uniform SEI layer, which facilitates homogeneous lithium plating, suppresses the undesired hydrogen evolution as well as electrolyte decomposition, and enhances the nitrogen reduction.

13.
Energy Environ Sci ; 15(5): 1988-2001, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35706421

RESUMO

The operating conditions of low pH and high potential at the anodes of polymer electrolyte membrane electrolysers restrict the choice of catalysts for the oxygen evolution reaction (OER) to oxides based on the rare metals iridium or ruthenium. In this work, we investigate the stability of both the metal atoms and, by quantitative and highly sensitive 18O isotope labelling experiments, the oxygen atoms in a series of RuO x and IrO x electrocatalysts during the OER in the mechanistically interesting low overpotential regime. We show that materials based on RuO x have a higher dissolution rate than the rate of incorporation of labelled oxygen from the catalyst into the O2 evolved ("labelled OER"), while for IrO x -based catalysts the two rates are comparable. On amorphous RuO x , metal dissolution and labelled OER are found to have distinct Tafel slopes. These observations together lead us to a full mechanistic picture in which dissolution and labelled OER are side processes to the main electrocatalytic cycle. We emphasize the importance of quantitative analysis and point out that since less than 0.2% of evolved oxygen contains an oxygen atom originating from the catalyst itself, lattice oxygen evolution is at most a negligible contribution to overall OER activity for RuO x and IrO x in acidic electrolyte.

14.
Energy Environ Sci ; 15(5): 1977-1987, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35706423

RESUMO

The high overpotential required for the oxygen evolution reaction (OER) represents a significant barrier for the production of closed-cycle renewable fuels and chemicals. Ruthenium dioxide is among the most active catalysts for OER in acid, but the activity at low overpotentials can be difficult to measure due to high capacitance. In this work, we use electrochemistry - mass spectrometry to obtain accurate OER activity measurements spanning six orders of magnitude on a model series of ruthenium-based catalysts in acidic electrolyte, quantifying electrocatalytic O2 production at potential as low as 1.30 VRHE. We show that the potential-dependent O2 production rate, i.e., the Tafel slope, exhibits three regimes, revealing a previously unobserved Tafel slope of 25 mV decade-1 below 1.4 VRHE. We fit the expanded activity data to a microkinetic model based on potential-dependent coverage of the surface intermediates from which the rate-determining step takes place. Our results demonstrate how the familiar quantities "onset potential" and "exchange current density" are influenced by the sensitivity of the detection method.

15.
Nat Commun ; 13(1): 2382, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501341

RESUMO

The need for efficient ammonia synthesis is as urgent as ever. Over the past two decades, many attempts to find new catalysts for ammonia synthesis at mild conditions have been reported and, in particular, many new promoters of the catalytic rate have been introduced beyond the traditional K and Cs oxides. Herein, we provide an overview of recent experimental results for non-traditional promoters and develop a comprehensive model to explain how they work. The model has two components. First, we establish what is the most likely structure of the active sites in the presence of the different promoters. We then show that there are two effects dictating the catalytic activity. One is an electrostatic interaction between the adsorbed promoter and the N-N dissociation transition state. In addition, we identify a new promoter effect for magnetic catalysts giving rise to an anomalously large lowering of the activation energy opening the possibility of finding new ammonia synthesis catalysts.

16.
J Phys Chem Lett ; 13(20): 4605-4611, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35588323

RESUMO

Although oxygen added to nonaqueous lithium-mediated electrochemical ammonia synthesis (LiMEAS) enhances Faradaic efficiency, its effect on chemical stability and byproducts requires understanding. Therefore, standardized high-resolution gas chromatography-mass spectrometry and nuclear magnetic resonance were employed. Different volatile degradation products have been qualitatively analyzed and quantified in tetrahydrofuran electrolyte by adding some oxygen to LiMEAS. Electrodeposited lithium and reduction/oxidation of the solvent on the electrodes produced organic byproducts to different extents, depending on the oxygen concentration, and resulted in less decomposition products after LiMEAS with oxygen. The main organic component in solid-electrolyte interphase was polytetrahydrofuran, which disappeared by adding an excess of oxygen (3 mol %) to LiMEAS. The total number of byproducts detected was 14, 9, and 8 with oxygen concentrations of 0, 0.8, and 3 mol %, respectively. The Faradaic efficiency and chemical stability of the LiMEAS have been greatly improved with addition of optimal 0.8 mol % oxygen at 20 bar total pressure.


Assuntos
Amônia , Lítio , Eletrodos , Eletrólitos , Lítio/química , Oxigênio/química
17.
Langmuir ; 38(4): 1514-1521, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35044193

RESUMO

Establishing relationships between the surface atomic structure and activity of Cu-based electrocatalysts for CO2 and CO reduction is hindered by probable surface restructuring under working conditions. Insights into these structural evolutions are scarce as techniques for monitoring the surface facets in conventional experimental designs are lacking. To directly correlate surface reconstructions to changes in selectivity or activity, the development of surface-sensitive, electrochemical probes is highly desirable. Here, we report the underpotential deposition of lead over three low index Cu single crystals in alkaline media, the preferred electrolyte for CO reduction studies. We find that underpotential deposition of Pb onto these facets occurs at distinct potentials, and we use these benchmarks to probe the predominant facet of polycrystalline Cu electrodes in situ. Finally, we demonstrate that Cu and Pb form an irreversible surface alloy during underpotential deposition, which limits this method to investigating the surface atomic structure after reaction.

18.
Science ; 374(6575): 1593-1597, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34941415

RESUMO

Owing to the worrying increase in carbon dioxide concentrations in the atmosphere, there is a need to electrify fossil-fuel­powered chemical processes such as the Haber-Bosch ammonia synthesis. Lithium-mediated electrochemical nitrogen reduction has shown preliminary promise but still lacks sufficient faradaic efficiency and ammonia formation rate to be industrially relevant. Here, we show that oxygen, previously believed to hinder the reaction, actually greatly improves the faradaic efficiency and stability of the lithium-mediated nitrogen reduction when added to the reaction atmosphere in small amounts. With this counterintuitive discovery, we reach record high faradaic efficiencies of up to 78.0 ± 1.3% at 0.6 to 0.8 mole % oxygen in 20 bar of nitrogen. Experimental x-ray analysis and theoretical microkinetic modeling shed light on the underlying mechanism.

19.
ACS Energy Lett ; 6(4): 1175-1180, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-34056107

RESUMO

The search for cheap and abundant alternatives to Pt for the hydrogen evolution reaction (HER) has led to many efforts to develop new catalysts. Although the discovery of promising catalysts is often reported, none can compete with Pt in intrinsic activity. To enable true progress, a rigorous assessment of intrinsic catalytic activity is needed, in addition to minimizing mass-transport limitations and following best practices for measurements. Herein, we underline the importance of measuring intrinsic catalytic activities, e.g., turnover frequencies (TOFs). Using mass-selected, identical Pt nanoparticles at a range of loadings, we show the pervasive impact of mass-transport limitations on the observed activity of Pt in acid. We present the highest TOF measured for Pt at room temperature. Since our measurements are still limited by mass transport, the true intrinsic HER activity for Pt in acid is still unknown. Using a numerical diffusion model, we suggest that hysteresis in cyclic voltammograms arises from H2 oversaturation, which is another indicator of mass-transport limitations.

20.
Anal Chem ; 93(18): 7022-7028, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33905662

RESUMO

Electrochemistry-mass spectrometry is a versatile and reliable tool to study the interfacial reaction rates of Faradaic processes with high temporal resolutions. However, the measured mass spectrometric signals typically do not directly correspond to the partial current density toward the analyte due to mass transport effects. Here, we introduce a mathematical framework, grounded on a mass transport model, to obtain a quantitative and truly dynamic partial current density from a measured mass spectrometer signal by means of deconvolution. Furthermore, it is shown that the time resolution of electrochemistry-mass spectrometry is limited by entropy-driven processes during mass transport to the mass spectrometer. The methodology is validated by comparing the measured impulse responses of hydrogen and oxygen evolution to the model predictions and subsequently applied to uncover dynamic phenomena during hydrogen and oxygen evolution in an acidic electrolyte.


Assuntos
Eletrólitos , Eletroquímica , Entropia , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA