Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Virus Res ; 285: 198023, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32428517

RESUMO

Human cytomegalovirus (HCMV) is a ubiquitous human pathogen of high clinical relevance. Despite intensive research of virus-host interaction, crucial details still remain unknown. In this study, the role of the cellular peptidyl-prolyl cis/trans isomerase Pin1 during HCMV infection was investigated. Pin1 is able to recognize phosphorylated serine/threonine-proline motifs and regulates the structural conformation, stability and function of its substrates. Concerning HCMV replication, our recent studies revealed that Pin1 plays an important role in viral nuclear egress by contributing to the depletion of the nuclear lamina at distinct sites through the cis/trans conversion of lamin proteins. Here, novel data illustrate the HCMV-induced upregulation of Pin1 including various cell types being permissive, semi-permissive or non-permissive for productive HCMV replication. Addressing the question of functional impact, Pin1 knock-out (KO) did not show a measurable effect on viral protein expression, at least when assessed by Western blot analysis. Applying highly sensitive methods of qPCR and plaque titration, a pharmacological inhibition of Pin1 activity, however, led to a significant decrease of viral genome equivalents and production of infectious virus, respectively. When focusing on the identification of viral proteins interacting with Pin1 by various coimmunoprecipitation (CoIP) settings, we obtained positive signals for (i) the core nuclear egress complex protein pUL50, (ii) the viral mRNA export factor pUL69 and (iii) the viral DNA polymerase processivity factor pUL44. Confocal immunofluorescence analysis focusing on partial colocalization between Pin1 and the coexpressed viral proteins pUL50, pUL69 or pUL44, respectively, was consistent with the CoIP experiments. Mapping experiments, using transient expression constructs for a series of truncated protein versions and specific replacement mutants, revealed a complex pattern of Pin1 interaction with these three early regulatory HCMV proteins. Data suggest a combination of different modes of Pin1 interactions, involving both classical phosphorylation-dependent Pin1 binding motifs and additional phosphorylation-independent binding sites. Combined, these results support the concept that Pin1 may play an important role in several stages of HCMV infection, thus determining viral replicative efficiency.


Assuntos
Infecções por Citomegalovirus/virologia , Citomegalovirus/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Células HEK293 , Humanos , Proteínas Virais/metabolismo , Replicação Viral
2.
Nat Microbiol ; 4(12): 2273-2284, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31548683

RESUMO

The deoxynucleotide triphosphate (dNTP) hydrolase SAMHD1 inhibits retroviruses in non-dividing myeloid cells. Although antiviral activity towards DNA viruses has also been demonstrated, the role of SAMHD1 during cytomegalovirus (CMV) infection remains unclear. To determine the impact of SAMHD1 on the replication of CMV, we used murine CMV (MCMV) to infect a previously established SAMHD1 knockout mouse model and found that SAMHD1 inhibits the replication of MCMV in vivo. By comparing the replication of MCMV in vitro in myeloid cells and fibroblasts from SAMHD1-knockout and control mice, we found that the viral kinase M97 counteracts SAMHD1 after infection by phosphorylating the regulatory residue threonine 603. The phosphorylation of SAMHD1 in infected cells correlated with a reduced level of dNTP hydrolase activity and the loss of viral restriction. Together, we demonstrate that SAMHD1 acts as a restriction factor in vivo and we identify the M97-mediated phosphorylation of SAMHD1 as a previously undescribed viral countermeasure.


Assuntos
Muromegalovirus/efeitos dos fármacos , Fosfotransferases/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/antagonistas & inibidores , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Animais , Antivirais/farmacologia , Fatores Estimuladores de Colônias/metabolismo , Modelos Animais de Doenças , Células HEK293 , Infecções por Herpesviridae/tratamento farmacológico , Infecções por Herpesviridae/virologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Muromegalovirus/enzimologia , Muromegalovirus/crescimento & desenvolvimento , Células NIH 3T3 , Fosforilação , Proteínas Recombinantes , Proteína 1 com Domínio SAM e Domínio HD/genética , Transcriptoma , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
3.
J Exp Med ; 214(5): 1509-1528, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28389502

RESUMO

Dendritic cells (DCs) are efficient antigen-presenting cells equipped with various cell surface receptors for the direct or indirect recognition of pathogenic microorganisms. Interestingly, not much is known about the specific expression pattern and function of the individual activating and inhibitory Fcγ receptors (FcγRs) on splenic DC subsets in vivo and how they contribute to the initiation of T cell responses. By targeting antigens to select activating and the inhibitory FcγR in vivo, we show that antigen uptake under steady-state conditions results in a short-term expansion of antigen-specific T cells, whereas under inflammatory conditions especially, the activating FcγRIV is able to induce superior CD4+ and CD8+ T cell responses. Of note, this effect was independent of FcγR intrinsic activating signaling pathways. Moreover, despite the expression of FcγRIV on both conventional splenic DC subsets, the induction of CD8+ T cell responses was largely dependent on CD11c+CD8+ DCs, whereas CD11c+CD8- DCs were critical for priming CD4+ T cell responses.


Assuntos
Células Dendríticas/fisiologia , Receptores de IgG/fisiologia , Linfócitos T/fisiologia , Animais , Endocitose/fisiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA