Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 601, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849407

RESUMO

Freshwater macroinvertebrates are a diverse group and play key ecological roles, including accelerating nutrient cycling, filtering water, controlling primary producers, and providing food for predators. Their differences in tolerances and short generation times manifest in rapid community responses to change. Macroinvertebrate community composition is an indicator of water quality. In Europe, efforts to improve water quality following environmental legislation, primarily starting in the 1980s, may have driven a recovery of macroinvertebrate communities. Towards understanding temporal and spatial variation of these organisms, we compiled the TREAM dataset (Time seRies of European freshwAter Macroinvertebrates), consisting of macroinvertebrate community time series from 1,816 river and stream sites (mean length of 19.2 years and 14.9 sampling years) of 22 European countries sampled between 1968 and 2020. In total, the data include >93 million sampled individuals of 2,648 taxa from 959 genera and 212 families. These data can be used to test questions ranging from identifying drivers of the population dynamics of specific taxa to assessing the success of legislative and management restoration efforts.


Assuntos
Invertebrados , Rios , Animais , Europa (Continente) , Água Doce , Dinâmica Populacional , Qualidade da Água , Biodiversidade , Ecossistema
2.
Sci Total Environ ; : 173629, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38821280

RESUMO

Pesticides are detected in surface water and groundwater, endangering the environment. In lowland regions with subsurface drainage systems, drained depressions become hotspots for transport of pesticides and their transformation products (TPs). This study focuses on detailed modelling of the degradation and transport of pesticides with different physico-chemical properties. The objective is to analyse complex hydrological transport processes, to understand the temporal and spatial dynamics of the degradation and transport of pesticides. The ecohydrological model SWAT+ simulates hydrological processes as well as agricultural management and pesticide degradation and can therefore be used to develop pesticide loss reduction strategies. This study focuses on modelling of three pesticides (pendimethalin, diflufenican, and flufenacet), and two TPs, flufenacet-oxalic acid (FOA) and flufenacet sulfonic acid (FESA). The study area is a 100-hectare farmland in the northern German lowlands of Schleswig-Holstein that is characterised by an extensive drainage network of 6.3 km and managed according to common conventional agricultural practice. SWAT+ modelled streamflow with very good agreement between observed and simulated data during calibration and validation. Regarding pesticides, the model performance for highly mobile substances is better than for non-mobile pesticides. While the transport of the moderately to very mobile substances via tile drains played an important role in both wet and dry conditions, no transport via tile drains was modelled for the highly sorptive and non-mobile pendimethalin. In conclusion, the model can reliably represent the degradation of moderately to very mobile pesticides in small-scale tile drainage-dominated catchments, as well as surface runoff-induced peak loads. However, it has weaknesses in accounting for the subsurface transport of non-mobile substances, which can lead to an underestimation of the subsequent delivery after precipitation events and thus underestimates the total load.

3.
Sci Total Environ ; 934: 173105, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750737

RESUMO

The decline of river and stream biodiversity results from multiple simultaneous occuring stressors, yet few studies explore responses explore responses across various taxonomic groups at the same locations. In this study, we address this shortcoming by using a coherent data set to study the association of nine commonly occurring stressors (five chemical, one morphological and three hydraulic) with five taxonomic groups (bacteria, fungi, diatoms, macro-invertebrates and fish). According to studies on single taxonomic groups, we hypothesise that gradients of chemical stressors structure community composition of all taxonomic groups, while gradients of hydraulic and morphological stressors are mainly related to larger organisms such as benthic macro-invertebrates and fish. Organisms were sampled over two years at 20 sites in two catchments: a recently restored urban lowland catchment (Boye) and a moderately disturbed rural mountainous catchment (Kinzig). Dissimilarity matrices were computed for each taxonomic group within a catchment. Taxonomic dissimilarities between sites were linked to stressor dissimilarities using multivariable Generalized Linear Mixed Models. Stressor gradients were longer in the Boye, but did in contrast to the Kinzig not cover low stress intensities. Accordingly, responses of the taxonomic groups were stronger in the Kinzig catchment than in the recently restored Boye catchment. The discrepancy between catchments underlines that associations to stressors strongly depend on which part of the stressor gradient is covered in a catchment. All taxonomic groups were related to conductivity. Bacteria, fungi and macro-invertebrates change with dissolved oxygen, and bacteria and fungi with total nitrogen. Morphological and hydraulic stressors had minor correlations with bacteria, fungi and diatoms, while macro-invertebrates were strongly related to fine sediment and discharge, and fish to high flow peaks. The results partly support our hypotheses about the differential associations of the different taxonomic groups with the stressors.


Assuntos
Biodiversidade , Monitoramento Ambiental , Rios , Rios/microbiologia , Animais , Fungos , Diatomáceas/fisiologia , Invertebrados/fisiologia , Peixes , Bactérias/classificação , Poluentes Químicos da Água/análise
4.
Sci Total Environ ; 929: 172659, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38657809

RESUMO

Identifying which environmental drivers underlie degradation and improvements of ecological communities is a fundamental goal of ecology. Achieving this goal is a challenge due to diverse trends in both environmental conditions and ecological communities across regions, and it is constrained by the lack of long-term parallel monitoring of environmental and community data needed to study causal relationships. Here, we identify key environmental drivers using a high-resolution environmental - ecological dataset, an ensemble of the Soil and Water Assessment Tool (SWAT+) model, and ecological models to investigate effects of climate, land-use, and runoff on the decadal trend (2012-2021) of stream macroinvertebrate communities in a restored urban catchment and an impacted catchment with mixed land-uses in Germany. The decadal trends showed decreased precipitation, increased temperature, and reduced anthropogenic land-uses, which led to opposing runoff trends - with decreased runoff in the restored catchment and increased runoff in the impacted catchment. The two catchments also varied in decadal trends of taxonomic and trait composition and metrics. The most significant improvements over time were recorded in communities of the restored catchment sites, which have become wastewater free since 2007 to 2009. Within the restored catchment sites, community metric trends were primarily explained by land-use and evaporation trends, while community composition trends were mostly associated with precipitation and runoff trends. Meanwhile, the communities in the impacted catchment did not undergo significant changes between 2012 and 2021, likely influenced by the effects of prolonged droughts following floods after 2018. The results of our study confirm the significance of restoration and land-use management in fostering long-term improvements in stream communities, while climate change remains a prodigious threat. The coupling of long-term biodiversity monitoring with concurrent sampling of relevant environmental drivers is critical for preventative and restorative management in ecology.


Assuntos
Monitoramento Ambiental , Invertebrados , Rios , Animais , Alemanha , Clima , Mudança Climática , Ecossistema , Movimentos da Água
5.
Sci Total Environ ; 872: 162196, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36781140

RESUMO

Our capacity to predict trajectories of ecosystem degradation and recovery is limited, especially when impairments are caused by multiple stressors. Recovery may be fast or slow and either complete or partial, sometimes result in novel ecosystem states or even fail completely. Here, we introduce the Asymmetric Response Concept (ARC) that provides a basis for exploring and predicting the pace and magnitude of ecological responses to, and release from, multiple stressors. The ARC holds that three key mechanisms govern population, community and ecosystem trajectories. Stress tolerance is the main mechanism determining responses to increasing stressor intensity, whereas dispersal and biotic interactions predominantly govern responses to the release from stressors. The shifting importance of these mechanisms creates asymmetries between the ecological trajectories that follow increasing and decreasing stressor intensities. This recognition helps to understand multiple stressor impacts and to predict which measures will restore communities that are resistant to restoration.


Assuntos
Ecossistema , Rios
6.
Glob Chang Biol ; 28(15): 4620-4632, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35570183

RESUMO

Globalization has led to the introduction of thousands of alien species worldwide. With growing impacts by invasive species, understanding the invasion process remains critical for predicting adverse effects and informing efficient management. Theoretically, invasion dynamics have been assumed to follow an "invasion curve" (S-shaped curve of available area invaded over time), but this dynamic has lacked empirical testing using large-scale data and neglects to consider invader abundances. We propose an "impact curve" describing the impacts generated by invasive species over time based on cumulative abundances. To test this curve's large-scale applicability, we used the data-rich New Zealand mud snail Potamopyrgus antipodarum, one of the most damaging freshwater invaders that has invaded almost all of Europe. Using long-term (1979-2020) abundance and environmental data collected across 306 European sites, we observed that P. antipodarum abundance generally increased through time, with slower population growth at higher latitudes and with lower runoff depth. Fifty-nine percent of these populations followed the impact curve, characterized by first occurrence, exponential growth, then long-term saturation. This behaviour is consistent with boom-bust dynamics, as saturation occurs due to a rapid decline in abundance over time. Across sites, we estimated that impact peaked approximately two decades after first detection, but the rate of progression along the invasion process was influenced by local abiotic conditions. The S-shaped impact curve may be common among many invasive species that undergo complex invasion dynamics. This provides a potentially unifying approach to advance understanding of large-scale invasion dynamics and could inform timely management actions to mitigate impacts on ecosystems and economies.


Assuntos
Ecossistema , Espécies Introduzidas , Animais , Europa (Continente) , Nova Zelândia , Caramujos
7.
Sci Rep ; 10(1): 2520, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054891

RESUMO

Climate change has the potential to alter the flow regimes of rivers and consequently affect the taxonomic and functional diversity of freshwater organisms. We modeled future flow regimes for the 2050 and 2090 time horizons and tested how flow regimes impact the abundance of 150 macroinvertebrate species and their functional trait compositions in one lowland river catchment (Treene) and one mountainous river catchment (Kinzig) in Europe. We used all 16 global circulation models (GCMs) and regional climate models (RCMs) of the CORDEX dataset under the RCP 8.5 scenario to calculate future river flows. The high variability in relative change of flow among the 16 climate models cascaded into the ecological models and resulted in substantially different predicted abundance values for single species. This variability also cascades into any subsequent analysis of taxonomic or functional freshwater biodiversity. Our results showed that flow alteration effects are different depending on the catchment and the underlying species pool. Documenting such uncertainties provides a basis for the further assessment of potential climate-change impacts on freshwater taxa distributions.

8.
Sci Data ; 5: 180224, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30398476

RESUMO

Hydrological variables are among the most influential when analyzing or modeling stream ecosystems. However, available hydrological data are often limited in their spatiotemporal scale and resolution for use in ecological applications such as predictive modeling of species distributions. To overcome this limitation, a regression model was applied to a 1 km gridded stream network of Germany to obtain estimated daily stream flow data (m3 s-1) spanning 64 years (1950-2013). The data are used as input to calculate hydrological indices characterizing stream flow regimes. Both temporal and spatial validations were performed. In addition, GLMs using both the calculated and observed hydrological indices were compared, suggesting that the predicted flow data are adequate for use in predictive ecological models. Accordingly, we provide estimated stream flow as well as a set of 53 hydrological metrics at 1 km grid for the stream network of Germany. In addition, we provide an R script where the presented methodology is implemented, that uses globally available data and can be directly applied to any other geographical region.

9.
Ecol Evol ; 8(6): 3393-3409, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29607034

RESUMO

Global change has the potential to affect river flow conditions which are fundamental determinants of physical habitats. Predictions of the effects of flow alterations on aquatic biota have mostly been assessed based on species ecological traits (e.g., current preferences), which are difficult to link to quantitative discharge data. Alternatively, we used empirically derived predictive relationships for species' response to flow to assess the effect of flow alterations due to climate change in two contrasting central European river catchments. Predictive relationships were set up for 294 individual species based on (1) abundance data from 223 sampling sites in the Kinzig lower-mountainous catchment and 67 sites in the Treene lowland catchment, and (2) flow conditions at these sites described by five flow metrics quantifying the duration, frequency, magnitude, timing and rate of flow events using present-day gauging data. Species' abundances were predicted for three periods: (1) baseline (1998-2017), (2) horizon 2050 (2046-2065) and (3) horizon 2090 (2080-2099) based on these empirical relationships and using high-resolution modeled discharge data for the present and future climate conditions. We compared the differences in predicted abundances among periods for individual species at each site, where the percent change served as a proxy to assess the potential species responses to flow alterations. Climate change was predicted to most strongly affect the low-flow conditions, leading to decreased abundances of species up to -42%. Finally combining the response of all species over all metrics indicated increasing overall species assemblage responses in 98% of the studied river reaches in both projected horizons and were significantly larger in the lower-mountainous Kinzig compared to the lowland Treene catchment. Such quantitative analyses of freshwater taxa responses to flow alterations provide valuable tools for predicting potential climate-change impacts on species abundances and can be applied to any stressor, species, or region.

10.
Sci Total Environ ; 533: 542-56, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26188405

RESUMO

Climate and land use changes affect the hydro- and biosphere at different spatial scales. These changes alter hydrological processes at the catchment scale, which impact hydrodynamics and habitat conditions for biota at the river reach scale. In order to investigate the impact of large-scale changes on biota, a cascade of models at different scales is required. Using scenario simulations, the impact of climate and land use change can be compared along the model cascade. Such a cascade of consecutively coupled models was applied in this study. Discharge and water quality are predicted with a hydrological model at the catchment scale. The hydraulic flow conditions are predicted by hydrodynamic models. The habitat suitability under these hydraulic and water quality conditions is assessed based on habitat models for fish and macroinvertebrates. This modelling cascade was applied to predict and compare the impacts of climate- and land use changes at different scales to finally assess their effects on fish and macroinvertebrates. Model simulations revealed that magnitude and direction of change differed along the modelling cascade. Whilst the hydrological model predicted a relevant decrease of discharge due to climate change, the hydraulic conditions changed less. Generally, the habitat suitability for fish decreased but this was strongly species-specific and suitability even increased for some species. In contrast to climate change, the effect of land use change on discharge was negligible. However, land use change had a stronger impact on the modelled nitrate concentrations affecting the abundances of macroinvertebrates. The scenario simulations for the two organism groups illustrated that direction and intensity of changes in habitat suitability are highly species-dependent. Thus, a joined model analysis of different organism groups combined with the results of hydrological and hydrodynamic models is recommended to assess the impact of climate and land use changes on river ecosystems.


Assuntos
Ecossistema , Peixes/fisiologia , Hidrologia , Invertebrados/fisiologia , Modelos Teóricos , Animais , Clima , Rios , Movimentos da Água , Qualidade da Água
11.
PLoS One ; 10(6): e0130228, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26114430

RESUMO

River biota are affected by global reach-scale pressures, but most approaches for predicting biota of rivers focus on river reach or segment scale processes and habitats. Moreover, these approaches do not consider long-term morphological changes that affect habitat conditions. In this study, a modelling framework was further developed and tested to assess the effect of pressures at different spatial scales on reach-scale habitat conditions and biota. Ecohydrological and 1D hydrodynamic models were used to predict discharge and water quality at the catchment scale and the resulting water level at the downstream end of a study reach. Long-term reach morphology was modelled using empirical regime equations, meander migration and 2D morphodynamic models. The respective flow and substrate conditions in the study reach were predicted using a 2D hydrodynamic model, and the suitability of these habitats was assessed with novel habitat models. In addition, dispersal models for fish and macroinvertebrates were developed to assess the re-colonization potential and to finally compare habitat suitability and the availability/ability of species to colonize these habitats. Applicability was tested and model performance was assessed by comparing observed and predicted conditions in the lowland Treene River in northern Germany. Technically, it was possible to link the different models, but future applications would benefit from the development of open source software for all modelling steps to enable fully automated model runs. Future research needs concern the physical modelling of long-term morphodynamics, feedback of biota (e.g., macrophytes) on abiotic habitat conditions, species interactions, and empirical data on the hydraulic habitat suitability and dispersal abilities of macroinvertebrates. The modelling framework is flexible and allows for including additional models and investigating different research and management questions, e.g., in climate impact research as well as river restoration and management.


Assuntos
Biota/fisiologia , Modelos Biológicos , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA