Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Viruses ; 16(8)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39205249

RESUMO

Enterococcus faecalis (E. faecalis) is a growing cause of nosocomial and antibiotic-resistant infections. Treating drug-resistant E. faecalis requires novel approaches. The use of bacteriophages (phages) against multidrug-resistant (MDR) bacteria has recently garnered global attention. Biofilms play a vital role in E. faecalis pathogenesis as they enhance antibiotic resistance. Phages eliminate biofilms by producing lytic enzymes, including depolymerases. In this study, Enterococcus phage vB_Efs8_KEN04, isolated from a sewage treatment plant in Nairobi, Kenya, was tested against clinical strains of MDR E. faecalis. This phage had a broad host range against 100% (26/26) of MDR E. faecalis clinical isolates and cross-species activity against Enterococcus faecium. It was able to withstand acidic and alkaline conditions, from pH 3 to 11, as well as temperatures between -80 °C and 37 °C. It could inhibit and disrupt the biofilms of MDR E. faecalis. Its linear double-stranded DNA genome of 142,402 bp contains 238 coding sequences with a G + C content and coding gene density of 36.01% and 91.46%, respectively. Genomic analyses showed that phage vB_Efs8_KEN04 belongs to the genus Kochikohdavirus in the family Herelleviridae. It lacked antimicrobial resistance, virulence, and lysogeny genes, and its stability, broad host range, and cross-species lysis indicate strong potential for the treatment of Enterococcus infections.


Assuntos
Bacteriófagos , Biofilmes , Farmacorresistência Bacteriana Múltipla , Enterococcus faecalis , Genoma Viral , Especificidade de Hospedeiro , Biofilmes/crescimento & desenvolvimento , Biofilmes/efeitos dos fármacos , Enterococcus faecalis/virologia , Enterococcus faecalis/efeitos dos fármacos , Quênia , Bacteriófagos/fisiologia , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Bacteriófagos/classificação , Humanos , Antibacterianos/farmacologia , Infecções por Bactérias Gram-Positivas/microbiologia , Esgotos/virologia
2.
Microorganisms ; 12(6)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38930553

RESUMO

We determined antibiotic susceptibility and employed Oxford Nanopore whole-genome sequencing to explore strain diversity, resistance, and virulence gene carriage among methicillin-resistant Staphylococcus aureus (MRSA) strains from different infection sites and timepoints in a tertiary Kenyan hospital. Ninety-six nonduplicate clinical isolates recovered between 2010 and 2023, identified and tested for antibiotic susceptibility on the VITEK ID/AST platform, were sequenced. Molecular typing, antibiotic resistance, and virulence determinant screening were performed using the relevant bioinformatics tools. The strains, alongside those from previous studies, were stratified into two periods covering 2010-2017 and 2018-2023 and comparisons were made. Mirroring phenotypic profiles, aac(6')-aph(2″) [aminoglycosides]; gyrA (S84L) and grlA (S80Y) [fluoroquinolones]; dfrG [anti-folates]; and tet(K) [tetracycline] resistance determinants dominated the collection. While the proportion of ST239/241-t037-SCCmec III among MRSA reduced from 37.7% to 0% over the investigated period, ST4803-t1476-SCCmec IV and ST152-t355-SCCmec IV were pre-eminent. The prevalence of Panton-Valentine leucocidin (PVL) and arginine catabolic mobile element (ACME) genes was 38% (33/87) and 6.8% (6/87), respectively. We observed the displacement of HA-MRSA ST239/241-t037-SCCmec III with the emergence of ST152-t355-SCCmec IV and a greater clonal heterogeneity. The occurrence of PVL+/ACME+ CA-MRSA in recent years warrants further investigations into their role in the CA-MRSA virulence landscape, in a setting of high PVL prevalence.

3.
Microbiol Spectr ; 12(2): e0185523, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38230935

RESUMO

This study describes the identification of the mcr-10.1 gene in a clinical isolate of an ST1 Enterobacter cloacae isolate cultured in 2015 in Kenya. The isolate was multidrug resistant, phenotypically non-susceptible to various antibiotics, including colistin. Whole genome sequence analyses indicated carriage of chromosomally encoded antimicrobial resistance genes and the colistin-resistant gene mcr-10.1 located on a 72-kb plasmid designated pECC011b with an IncFIA(HI1) replicon directly adjacent to tyrosine recombinase gene, xerC, and downstream of an ISKPn26 insertion sequence. Studies have shown that expression of mcr-10.1 may not be sufficient to confer colistin resistance, but a novel non-synonymous mutation (S244T) was identified in the phoQ gene known to influence colistin resistance within lipid modification pathways, which could have complemented the mcr-10.1 resistance mechanism. In silico analysis of the mutant phoQ protein shows the location of the mutation to be at the Histidine kinases, Adenyl cyclases, Methyl-accepting proteins and Phosphatases (HAMP) region, which plays a crucial role in the protein's activity. This study and our previous report of mcr-8 in Klebsiella pneumoniae indicate the presence of mobile mcr genes in the Enterobacterales order of bacteria in Kenya. The study points to the importance of regulation of colistin in the animal industry and enhancing surveillance in both human and animal health to curb the spread of mcr genes and accurately assess the risks posed by these mobile genetic elements in both sectors.IMPORTANCEThis paper reports the detection of new colistin resistance mechanisms in Kenya in a clinical isolate of Enterobacter cloacae in a patient with a healthcare-associated infection. The plasmid-mediated resistance gene, mcr-10.1, and a novel amino acid mutation S244T in the phoQ gene, located in a region of the protein involved in membrane cationic stability contributing to colistin resistance, were detected. Colistin is a critical last-line drug for multidrug-resistant (MDR) gram-negative human infections and is used for treatment and growth promotion in the animal industry. The emergence of the resistance mechanisms points to the potential overuse of colistin in the animal sector in Kenya, which enhances resistance, threatens the utility of colistin, and limits treatment options for MDR infections. This study highlights the need to enhance surveillance of colistin resistance across sectors and strengthen One Health policies that ensure antimicrobial stewardship and implementation of strategies to mitigate the spread of antibiotic resistance.


Assuntos
Colistina , Enterobacter cloacae , Animais , Humanos , Enterobacter cloacae/genética , Quênia , Antibacterianos/farmacologia , Plasmídeos , Mutação , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-37593661

RESUMO

Visceral and cutaneous leishmaniasis are endemic to specific regions due to the ecological preferences of phlebotomine sand flies and Leishmania spp. transmission. Sand fly entomological data in northern Kenya are scarce due to limited studies and neglect of leishmaniasis. The aim of this study was to investigate: (i) sand fly diversity and distribution; (ii) occurrence of Leishmania DNA within sand flies; and (iii) blood-meal sources of sand flies in Laisamis, northern Kenya. We conducted an entomological survey during February and March of 2021 in five areas of Laisamis sub-county using standard CDC light traps. A total of 1009 sand flies (394 male and 615 female) were morphologically identified, and representative samples verified by PCR amplification and sequencing of the cytochrome c oxidase subunit 1 (cox1) gene. Similarly, we identified blood-meal sources and Leishmania DNA in female sand flies by PCR amplicon sequencing of the vertebrate cytochrome b (cyt b) gene and internal transcribed spacer 1 (ITS1) of the 28S rRNA gene, respectively. Sergentomyia clydei (59.8%) was the most abundant sand fly species. Though collected mainly from one locality (Tirgamo), 14.8% of samples belonged to Phlebotomus (Artemievus) alexandri Sinton, 1928. We detected DNA of Leishmania major in 5.19% of Ph. alexandri, whereas Leishmania adleri DNA was detected in S. clydei (7.51%), Sergentomyia squamipleuris (8.00%), and Sergentomyia africanus (8.33%). Nine of 13 blood-fed sand flies had obtained blood from humans, of which 33.3% had L. major DNA. Both Ph. alexandri and S. clydei primarily fed on humans and could potentially be involved in the transmission of cutaneous leishmaniasis. The findings of this study contribute to the understanding of sand fly vector populations and their potential to transmit leishmaniasis in the area.

6.
Open Res Afr ; 5: 23, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37396343

RESUMO

Background: Livestock are key sources of livelihood among pastoral communities. Livestock productivity is chiefly constrained by pests and diseases. Due to inadequate disease surveillance in northern Kenya, little is known about pathogens circulating within livestock and the role of livestock-associated biting keds (genus Hippobosca) in disease transmission. We aimed to identify the prevalence of selected hemopathogens in livestock and their associated blood-feeding keds. Methods: We randomly collected 389 blood samples from goats (245), sheep (108), and donkeys (36), as well as 235 keds from both goats and sheep (116), donkeys (11), and dogs (108) in Laisamis, Marsabit County, northern Kenya. We screened all samples for selected hemopathogens by high-resolution melting (HRM) analysis and sequencing of PCR products amplified using primers specific to the genera: Anaplasma, Trypanosoma, Clostridium, Ehrlichia, Brucella, Theileria, and Babesia. Results: In goats, we detected Anaplasma ovis (84.5%), a novel Anaplasma sp. (11.8%), Trypanosoma vivax (7.3%), Ehrlichia canis (66.1%), and Theileria ovis (0.8%). We also detected A. ovis (93.5%), E. canis (22.2%), and T. ovis (38.9%) in sheep. In donkeys, we detected ' Candidatus Anaplasma camelii' (11.1%), T. vivax (22.2%), E. canis (25%), and Theileria equi (13.9%). In addition, keds carried the following pathogens; goat/sheep keds - T. vivax (29.3%) , Trypanosoma evansi (0.86%), Trypanosoma godfreyi (0.86%), and E. canis (51.7%); donkey keds - T. vivax (18.2%) and E. canis (63.6%); and dog keds - T. vivax (15.7%), T. evansi (0.9%), Trypanosoma simiae (0.9%) , E. canis (76%), Clostridium perfringens (46.3%), Bartonella schoenbuchensis (76%), and Brucella abortus (5.6%). Conclusions: We found that livestock and their associated ectoparasitic biting keds carry a number of infectious hemopathogens, including the zoonotic B. abortus. Dog keds harbored the most pathogens, suggesting dogs, which closely interact with livestock and humans, as key reservoirs of diseases in Laisamis. These findings can guide policy makers in disease control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA