RESUMO
Thermoelectric effects refer to the voltage generation from temperature gradients in condensed matter. Although various power generators are made from them, all the known effects, such as Seebeck effect, require macroscopic temperature gradients; since the sign of the generated voltage is reversed by reversing the temperature gradient, the net voltage disappears when the temperature distribution fluctuates temporarily or spatially with a macroscopic temperature gradient of zero. It is impossible to utilize such temperature fluctuations in the conventional thermoelectric effects, a situation which limits their application. Here we report the observation of a second-order nonlinear thermoelectric effect; we develop a method to measure nonlinear thermoelectricity and observe that a superconducting MoGe film on Y3Fe5O12 generates a voltage proportional to the square of the applied temperature gradient. The nonlinear thermoelectric generation demonstrated here provides a way for making power generators that produce electric power from temperature fluctuations.
RESUMO
SrTiO3 (STO) substrate, a perovskite oxide material known for its high dielectric constant (É), facilitates the observation of various (high-temperature) quantum phenomena. A quantum Hall topological insulating (QHTI) state, comprising two copies of QH states with antiparallel two ferromagnetic edge-spin overlap protected by the U(1) axial rotation symmetry of spin polarization, has recently been achieved in low magnetic field (B) even as high as ≈100 K in a monolayer graphene/thin hexagonal boron nitride (hBN) spacer placed on an STO substrate, thanks to the high É of STO. Despite the use of the heavy STO substrate, however, proximity-induced quantum spin Hall (QSH) states in 2D TI phases, featuring a topologically protected helical edge spin phase within time-reversal-symmetry, is not confirmed. Here, with the use of a monolayer hBN spacer, it is revealed the coexistence of QSH (at B = 0T) and QHTI (at B ≠ 0) states in the same single graphene sample placed on an STO, with a crossover regime between the two at low B. It is also classified that the different symmetries of the two nontrivial helical edge spin phases in the two states lead to different interaction with electron-puddle quantum dots, caused by a local surface pocket of the STO, in the crossover regime, resulting in a spin dephasing only for the QHTI state. The results obtained using STO substrates open the doors to investigations of novel QH spin states with different symmetries and their correlations with quantum phenomena. This exploration holds value for potential applications in spintronic devices.
RESUMO
We experimentally and theoretically demonstrate that nonlinear spin-wave interactions suppress the hybrid magnon-photon quasiparticle or "magnon polariton" in microwave spectra of a yttrium iron garnet film detected by an on-chip split-ring resonator. We observe a strong coupling between the Kittel and microwave cavity modes in terms of an avoided crossing as a function of magnetic fields at low microwave input powers, but a complete closing of the gap at high powers. The experimental results are well explained by a theoretical model including the three-magnon decay of the Kittel magnon into spin waves. The gap closure originates from the saturation of the ferromagnetic resonance above the Suhl instability threshold by a coherent backreaction from the spin waves.
RESUMO
When the electric conductance of a nano-sized metal is measured at low temperatures, it often exhibits complex but reproducible patterns as a function of external magnetic fields called quantum fingerprints in electric conductance. Such complex patterns are due to quantum-mechanical interference of conduction electrons; when thermal disturbance is feeble and coherence of the electrons extends all over the sample, the quantum interference pattern reflects microscopic structures, such as crystalline defects and the shape of the sample, giving rise to complicated interference. Although the interference pattern carries such microscopic information, it looks so random that it has not been analysed. Here we show that machine learning allows us to decipher quantum fingerprints; fingerprint patterns in magneto-conductance are shown to be transcribed into spatial images of electron wave function intensities (WIs) in a sample by using generative machine learning. The output WIs reveal quantum interference states of conduction electrons, as well as sample shapes. The present result augments the human ability to identify quantum states, and it should allow microscopy of quantum nanostructures in materials by making use of quantum fingerprints.
RESUMO
The interplay among magnetization and deformation of solids has long been an important issue in magnetism, the elucidation of which has made great progress in material physics. Controlling volume and shapes of matter is now indispensable to realizing various actuators for precision machinery and nanotechnology. Here, we show that the volume of a solid can be manipulated by injecting a spin current: a spin current volume effect (SVE). By using a magnet Tb0.3Dy0.7Fe2 exhibiting strong spin-lattice coupling, we demonstrate that the sample volume changes in response to a spin current injected by spin Hall effects. Theoretical calculation reflecting spin-current induced modulation of magnetization fluctuation well reproduces the experimental results. The SVE expands the scope of spintronics into making mechanical drivers.
RESUMO
A recent study found that magnetization curves for Y3Fe5O12 (YIG) slab and thick films (>20 µm thick) differed from bulk system curves by their longitudinal spin Seebeck effect in a Pt/YIG bilayer system. The deviation was due to intrinsic YIG surface magnetic anisotropy, which is difficult to adopt extrinsic surface magnetic anisotropy even when in contact with other materials on the YIG surface. This study experimentally demonstrates evidence for extrinsic YIG surface magnetic anisotropy when in contact with a diamagnetic graphene interlayer by observing the spin Seebeck effect, directly proving intrinsic YIG surface magnetic anisotropy interruption. We show the Pt/YIG bilayer system graphene interlayer role using large area single and multilayered graphenes using the longitudinal spin Seebeck effect at room temperature, and address the presence of surface magnetic anisotropy due to magnetic proximity between graphene and YIG layer. These findings suggest a promising route to understand new physics of spin Seebeck effect in spin transport.
RESUMO
The discovery of new materials that efficiently transmit spin currents has been important for spintronics and material science. The electric insulator Gd3Ga5O12 (GGG), a standard substrate for growing magnetic films, can be a spin current generator, but has never been considered as a superior conduit for spin currents. Here we report spin current propagation in paramagnetic GGG over several microns. Surprisingly, spin transport persists up to temperatures of 100 K [Formula: see text] Tg = 180 mK, the magnetic glass-like transition temperature of GGG. At 5 K and 3.5 T, we find a spin diffusion length λGGG = 1.8 ± 0.2 µm and a spin conductivity σGGG = (7.3 ± 0.3) × 104 Sm-1 that is larger than that of the record quality magnet Y3Fe5O12 (YIG). We conclude that exchange stiffness is not required for efficient spin transport, which challenges conventional models and provides new material-design strategies for spintronic devices.
RESUMO
Information transport and processing by pure magnonic spin currents in insulators is a promising alternative to conventional charge-current-driven spintronic devices. The absence of Joule heating and reduced spin wave damping in insulating ferromagnets have been suggested for implementing efficient logic devices. After the successful demonstration of a majority gate based on the superposition of spin waves, further components are required to perform complex logic operations. Here, we report on magnetization orientation-dependent spin current detection signals in collinear magnetic multilayers inspired by the functionality of a conventional spin valve. In Y3Fe5O12|CoO|Co, we find that the detection amplitude of spin currents emitted by ferromagnetic resonance spin pumping depends on the relative alignment of the Y3Fe5O12 and Co magnetization. This yields a spin valve-like behavior with an amplitude change of 120% in our systems. We demonstrate the reliability of the effect and identify its origin by both temperature-dependent and power-dependent measurements.
RESUMO
Sharp structures in the magnetic field-dependent spin Seebeck effect (SSE) voltages of Pt/Y_{3}Fe_{5}O_{12} at low temperatures are attributed to the magnon-phonon interaction. Experimental results are well reproduced by a Boltzmann theory that includes magnetoelastic coupling. The SSE anomalies coincide with magnetic fields tuned to the threshold of magnon-polaron formation. The effect gives insight into the relative quality of the lattice and magnetization dynamics.
RESUMO
We studied the morphological and biochemical changes of mitochondria-rich cells (MRCs) of a demersal teleost, Paralichthys olivaceus, during exposure to 0.98, 2.97 and 4.95kPa pCO2. The apical opening area of MRCs increased 2.2 and 4.1 times by 24h exposure to 2.97 and 4.95kPa pCO2, respectively, while the cross-sectional area or density of MRCs did not change. Gill Na(+)/K(+)-ATPase activity more than doubled at 72h and then returned to the pre-exposure level at 168h in 0.98kPa pCO2, while it increased 1.7 times at 24h at 4.95kPa. These results indicate that the apical opening area of MRCs and the gill Na(+)/K(+)-ATPase activity may be used as an indicator of acute (up to 72h), but not chronic, impacts of high (>1kPa) seawater CO2 conditions in P. olivacues. Limitations of those parameters as indices of CO2 impacts are discussed.
Assuntos
Dióxido de Carbono/toxicidade , Monitoramento Ambiental/métodos , Brânquias/anatomia & histologia , Mitocôndrias/efeitos dos fármacos , Água do Mar/química , Poluentes Químicos da Água/toxicidade , Animais , Dióxido de Carbono/análise , Linguado , Brânquias/citologia , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análiseRESUMO
We investigated the effects of elevated pCO2 in seawater both on the acute mortality and the reproductive properties of the benthic copepod Tigriopus japonicus and gastropod Babylonia japonica with the purpose of accumulating basic data for assessing potential environmental impacts of sub-sea geological storage of anthropogenic CO2 in Japan. Acute tests showed that nauplii of T. japonicus have a high tolerance to elevated pCO2 environments. Full life cycle tests on T. japonicus indicated NOEC=5800µatm and LOEC=37,000µatm. Adult B. japonica showed remarkable resistance to elevated pCO2 in the acute tests. Embryonic development of B. japonica showed a NOEC=1500µatm and LOEC=5400µatm. T. japonicus showed high resistance to elevated pCO2 throughout the life cycle and B. japonica are rather sensitive during the veliger stage when they started to form their shells.
Assuntos
Dióxido de Carbono/toxicidade , Copépodes/fisiologia , Gastrópodes/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Dióxido de Carbono/análise , Sequestro de Carbono , Monitoramento Ambiental , Concentração de Íons de Hidrogênio , Japão , Estágios do Ciclo de Vida , Reprodução/efeitos dos fármacos , Água do Mar/química , Poluentes Químicos da Água/análiseRESUMO
CO(2) ocean storage by which liquefied CO(2) is injected into the deep-sea to mitigate the climate change would increase the CO(2) concentrations of the surrounding seawater. The biological impacts of such dynamic CO(2) environments are, however, unknown. We examined the acute toxicity of temporally changing seawater CO(2) concentrations on juveniles of Sillago japonica. Step-wise increases in ambient CO(2) to fCO(2) (fractional CO(2) concentration of the gas mixture bubbled into seawater) levels of 7% and 9% resulted in mortalities of 0.15 and 0.40-0.67 after 18 h, respectively. In contrast, one-step increases to these CO(2) levels killed all fish within 15 min. Further, a sudden drop of fCO(2) from 9-10% CO(2) to normocapnia (0.038%) killed all the surviving fish within a few minutes. These results demonstrate that impacts of ocean CO(2) storage need to be examined under conditions mimicking the dynamic changes in CO(2) levels expected to occur by the CO(2) injection procedure.
Assuntos
Dióxido de Carbono/toxicidade , Mortalidade , Perciformes , Água do Mar/química , Animais , Animais Recém-Nascidos , Relação Dose-Resposta a Droga , Exposição Ambiental , Modelos Biológicos , Eliminação de Resíduos , Fatores de Tempo , Testes de ToxicidadeRESUMO
To compare the acute toxicity of CO(2)- and HCl-acidified seawater, eggs and larvae of a marine fish, Pagrus major, were exposed to seawater equilibrated with CO(2)-enriched gas mixtures (CO(2)=5% or 10%, O(2)=20.95% balanced with N(2)) or seawater acidified with 1 N HCl at two pH levels (pH 6.2 (=5% CO(2)) and 5.9 (=10% CO(2))) for 6 h (eggs) or 24 h (larvae). Mortalities of eggs were 85.8% (CO(2)) and 3.6% (HCl) at pH 6.2, and 97.4% (CO(2)) and 0.9% (HCl) at pH 5.9, while those of larvae were 61.2% (CO(2)) and 1.6% (HCl) at pH 6.2, and 100% (CO(2)) and 5.0% (HCl) at pH 5.9. Thus, previous research on the effects of acidified seawater on marine organisms, as a substitute for CO(2), has largely underestimated the toxic effects of CO(2).