Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Animals (Basel) ; 14(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39272315

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is a globally significant pathogen of pigs. Preventing the entry of PRRSV into swine breeding herds enhances animal health and welfare. A recently published retrospective cohort study reported significant differences in PRRSV incidence risk between breeding herds that practiced Next Generation Biosecurity (NGB) COMPLETE, versus herds that practiced a partial approach (NGB INCOMPLETE) over a 2-year period. This follow-up communication builds on this previous publication and brings new information regarding statistical differences in key performance indicators (KPIs) from 43 NGB COMPLETE herds and 19 NGB INCOMPLETE herds during disease years 1 and 2. Statistically significant differences included higher total born/farrow and pigs weaned/female along with a reduced pre-weaning mortality and wean to 1st service interval, as well as a 0.91 increase in the number of pigs weaned/mated female/year. In addition, this communication reports that PRRSV incidence risk throughout disease years 1-3 was 8.0%, and that the association of NGB status (COMPLETE vs. INCOMPLETE) and disease burden for the cumulative 3-year period was statistically significant (p < 0.0001). These findings support previously published data that NGB, while not perfect, provides sustainable prevention of PRRSV, and may help improve herd productivity.

2.
Porcine Health Manag ; 10(1): 34, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39334499

RESUMO

BACKGROUND: During the fall of 2020, the porcine reproductive and respiratory syndrome virus (PRRSV) L1C.5 variant emerged and rapidly spread throughout southern Minnesota generating questions regarding possible transmission routes. This study aimed to investigate whether PRRSV could be detected on surfaces inside and outside pig barns housing L1C.5 variant PRRSV-positive pigs to illustrate the potential for indirect transmission of PRRSV. Seven Midwestern U.S. PPRS-positive breeding or growing pig farms and one PRRS-negative farm were conveniently selected. Internal and external barn surfaces were wiped using a PBS moistened cloth and the resulting liquid was submitted to the University of Minnesota Veterinary Diagnostic Laboratory for PRRSV RT-PCR testing and virus isolation. RESULTS: All (n = 26) samples from PRRSV-negative farm tested negative. Nineteen (13%) out of 143 samples from positive farms yielded positive RT-PCR results. Positive samples originated primarily from exhaust fan cones and doorknobs, followed by anteroom floor and mortality carts/sleds. Virus isolation attempted on two samples did not yield positive results. CONCLUSIONS: PRRSV contamination can occur on surfaces inside and outside pig barns that are in frequent contact with farm personnel. Although virus isolation attempts were negative, our results illustrate the potential for PRRSV to be transmitted indirectly through contaminated materials or farm personnel. The study supports the implementation of biosecurity practices by farm personnel to prevent the introduction of PRRSV into farms and the prevention of PRRSV transmission between farms.

3.
Vet Microbiol ; 298: 110215, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39154556

RESUMO

Understanding regional disease risk is critical for swine disease prevention and control. Since 2011, the Morrison Swine Health Monitoring Project (MSHMP) has strengthened partnerships among practitioners and producers to report health events (e.g., porcine reproductive and respiratory syndrome (PRRS) virus outbreaks) at the U.S. national level. Using MSHMP data and PRRS as an example, an early regional occurrence warning tool to provide near-real-time alerts was developed. MSHMP-participating production systems were invited to enroll. An algorithm was developed to calculate the number of PRRSV-positive sites near each enrolled site, determined from site-specific radius. The radius was determined in three steps. First, an initial radius of 25 miles was set for sites in pig-dense states and 50 miles for others. Secondly, four variables were generated to account for the sites within the initial radius: A) Total number of PRRSV-positive sites; B) Number of PRRSV-positive sites from other production systems; C) Total number of sites enrolled, and D) Total number of sites monitored by MSHMP. Subsequently, the reporting radius was automatically increased when confidentiality concerns arose. Results were compiled into system-specific reports and shared weekly with each participant. Reports have been shared since May 9, 2023, representing 178 breeding sites, comprising approximately 565 K sows. Examples of how participants use these reports include adjusting biosecurity programs, frequency of supply introduction, and transportation routes. The early occurrence warning tool developed in this study enhances producers' ability to communicate effectively and respond quickly to health threats, mitigating regional disease while preparing for foreign disease introductions.

4.
Pathogens ; 13(8)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39204249

RESUMO

Specimens collected from dead pigs are a welfare-friendly and cost-effective active surveillance. This study aimed to evaluate the accuracy of different postmortem specimens from dead piglets for disease detection, using PRRSV as an example. Three farrow-to-wean farms undergoing PRRSV elimination were conveniently selected. Samples were collected at approximately 8- and 20-weeks post-outbreak. Postmortem specimens included nasal (NS), oral (OS), and rectal (RS) swabs, tongue-tip fluids (TTF), superficial inguinal lymph nodes (SIL), and intracardiac blood. These were tested individually for PRRSV by RT-PCR. Sensitivity, specificity, negative and positive predictive values, and agreement of postmortem specimens were calculated using intracardiac sera as the gold standard. OS and SIL had the best overall performance, with sensitivities of 94.6-100%, specificities of 83.9-85.1%, and negative predictive values of 97.3-100%. TTF had high sensitivity (92.2%) but low specificity (53.9%) and positive predictive value (48.3%). While challenges in meeting sampling targets due to variable pre-weaning mortality were noted, PRRS was detected in all postmortem specimens. OS and NS showed promising results for disease monitoring, though TTF, despite their sensitivity, had lower specificity, making them less suitable for individual infection assessment but useful for assessing environmental contamination.

5.
Viruses ; 16(3)2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38543810

RESUMO

PDCoV, an enveloped RNA virus, causes atrophic enteritis in neonatal piglets, leading to diarrhea, malabsorption, dehydration, and death. The study aims to fill the gap in the current epidemiological information about PDCoV in the U.S. pig population after its emergence in 2014. Data from the Morrison Swine Health Monitoring Project (MSHMP) between January 2015 and December 2023 were analyzed, representing approximately 60% of the U.S. breeding herd. Participating herds report weekly PDCoV health status. In total, 244 PDCoV outbreaks occurred in 186 sites from 22 production systems across 16 states. Case counts peaked during winter, and incidence ranged from 0.44% in 2017 to 4.28% in 2023. For sites that experienced more than one PDCoV outbreak during the study period, the interval between outbreaks was a median of 2.11 years. The South and Midwest regions reported the majority of cases. In 2017, a shift in the spatial distribution of cases from the Midwest to the South was observed. The findings underscore the importance of continued monitoring and strengthened control measures to mitigate the impact of PDCoV in U.S. breeding herds.


Assuntos
Infecções por Coronavirus , Coronavirus , Doenças dos Suínos , Animais , Estados Unidos/epidemiologia , Suínos , Coronavirus/genética , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Deltacoronavirus , Doenças dos Suínos/epidemiologia
6.
J Am Vet Med Assoc ; 262(4): 520-525, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38183764

RESUMO

OBJECTIVE: Porcine reproductive and respiratory syndrome (PRRS) is a significant disease of swine. The purpose of this study was to determine whether application of a comprehensive, science-based approach to breeding herd biosecurity, known as next-generation biosecurity (NGB), could reduce PRRS incidence risk across a large commercial production company. ANIMALS: Pigs (381,404 sows across 76 breeding herds). METHODS: From 2009 to 2020, the annual incidence risk of PRRS in sow farms managed by the same company averaged 33%, ranging from 20% to 50%. To measure the effect of NGB on PRRS incidence risk, a retrospective cohort study was conducted from July 1, 2021, to June 30, 2023, across breeding herds managed by the same company. During the analysis, 2 groups of herds emerged: those that implemented protocols for all phases of NGB (NGB COMPLETE), and those that implemented all described protocols of biosecurity except for air filtration (NGB INCOMPLETE). RESULTS: During the 2-year assessment period, 56 breeding herds were classified as NGB COMPLETE, while 20 herds were NGB INCOMPLETE. The PRRS incidence risk in NGB COMPLETE herds was 8.9% as compared to 40.0% in NGB INCOMPLETE herds. From disease year 1 (July 1, 2021, to June 30, 2022) and disease year 2 (July 1, 2022, to June 30, 2023), system-wide PRRS incidence risk was 8.6% and 9.2%, respectively. The association between NGB status and PRRS incidence risk for the 2-year period was statistically significant at a P value of .006. CLINICAL RELEVANCE: Results of the present report provided evidence that improvements in biosecurity result in lower PRRS incidence risk under large-scale commercial swine production conditions.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Humanos , Suínos , Animais , Feminino , Síndrome Respiratória e Reprodutiva Suína/epidemiologia , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Estudos Retrospectivos , Incidência , Biosseguridade , Meio-Oeste dos Estados Unidos/epidemiologia , Cruzamento
7.
Viruses ; 15(9)2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37766244

RESUMO

Describing PRRSV whole-genome viral diversity data over time within the host and within-farm is crucial for a better understanding of viral evolution and its implications. A cohort study was conducted at one naïve farrow-to-wean farm reporting a PRRSV outbreak. All piglets 3-5 days of age (DOA) born to mass-exposed sows through live virus inoculation with the recently introduced wild-type virus two weeks prior were sampled and followed up at 17-19 DOA. Samples from 127 piglets were individually tested for PRRSV by RT-PCR and 100 sequences were generated using Oxford Nanopore Technologies chemistry. Female piglets had significantly higher median Ct values than males (15.5 vs. 13.7, Kruskal-Wallis p < 0.001) at 3-5 DOA. A 52.8% mortality between sampling points was found, and the odds of dying by 17-19 DOA decreased with every one unit increase in Ct values at 3-5 DOA (OR = 0.76, 95% CI 0.61-0.94, p = 0.01). Although the within-pig percent nucleotide identity was overall high (99.7%) between 3-5 DOA and 17-19 DOA samples, ORFs 4 and 5a showed much lower identities (97.26% and 98.53%, respectively). When looking solely at ORF5, 62% of the sequences were identical to the 3-5 DOA consensus. Ten and eight regions showed increased nucleotide and amino acid genetic diversity, respectively, all found throughout ORFs 2a/2b, 4, 5a/5, 6, and 7.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Humanos , Masculino , Animais , Feminino , Suínos , Recém-Nascido , Síndrome Respiratória e Reprodutiva Suína/epidemiologia , Estudos de Coortes , Fazendas , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Nucleotídeos , Filogenia
8.
Front Vet Sci ; 10: 1201644, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37519995

RESUMO

Transport of pigs between sites occurs frequently as part of genetic improvement and age segregation. However, a lack of transport biosecurity could have catastrophic implications if not managed properly as disease spread would be imminent. However, there is a lack of a comprehensive study of vehicle movement trends within swine systems in the Midwest. In this study, we aimed to describe and characterize vehicle movement patterns within one large Midwest swine system representative of modern pig production to understand movement trends and proxies for biosecurity compliance and identify potential risky behaviors that may result in a higher risk for infectious disease spread. Geolocation tracking devices recorded vehicle movements of a subset of trucks and trailers from a production system every 5 min and every time tracks entered a landmark between January 2019 and December 2020, before and during the COVID-19 pandemic. We described 6,213 transport records from 12 vehicles controlled by the company. In total, 114 predefined landmarks were included during the study period, representing 5 categories of farms and truck wash facilities. The results showed that trucks completed the majority (76.4%, 2,111/2,762) of the recorded movements. The seasonal distribution of incoming movements was similar across years (P > 0.05), while the 2019 winter and summer seasons showed higher incoming movements to sow farms than any other season, year, or production type (P < 0.05). More than half of the in-movements recorded occurred within the triad of sow farms, wean-to-market stage, and truck wash facilities. Overall, time spent at each landmark was 9.08% higher in 2020 than in 2019, without seasonal highlights, but with a notably higher time spent at truck wash facilities than any other type of landmark. Network analyses showed high connectivity among farms with identifiable clusters in the network. Furthermore, we observed a decrease in connectivity in 2020 compared with 2019, as indicated by the majority of network parameter values. Further network analysis will be needed to understand its impact on disease spread and control. However, the description and quantification of movement trends reported in this study provide findings that might be the basis for targeting infectious disease surveillance and control.

9.
Viruses ; 15(6)2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37376536

RESUMO

The Americas, particularly Brazil, were greatly impacted by the widespread Zika virus (ZIKV) outbreak in 2015 and 2016. Efforts were made to implement genomic surveillance of ZIKV as part of the public health responses. The accuracy of spatiotemporal reconstructions of the epidemic spread relies on the unbiased sampling of the transmission process. In the early stages of the outbreak, we recruited patients exhibiting clinical symptoms of arbovirus-like infection from Salvador and Campo Formoso, Bahia, in Northeast Brazil. Between May 2015 and June 2016, we identified 21 cases of acute ZIKV infection and subsequently recovered 14 near full-length sequences using the amplicon tiling multiplex approach with nanopore sequencing. We performed a time-calibrated discrete phylogeographic analysis to trace the spread and migration history of the ZIKV. Our phylogenetic analysis supports a consistent relationship between ZIKV migration from Northeast to Southeast Brazil and its subsequent dissemination beyond Brazil. Additionally, our analysis provides insights into the migration of ZIKV from Brazil to Haiti and the role Brazil played in the spread of ZIKV to other countries, such as Singapore, the USA, and the Dominican Republic. The data generated by this study enhances our understanding of ZIKV dynamics and supports the existing knowledge, which can aid in future surveillance efforts against the virus.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Zika virus/genética , Brasil/epidemiologia , Filogenia , América/epidemiologia
10.
Pathogens ; 12(5)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37242410

RESUMO

The repeated emergence of new genetic variants of PRRSV-2, the virus that causes porcine reproductive and respiratory syndrome (PRRS), reflects its rapid evolution and the failure of previous control efforts. Understanding spatiotemporal heterogeneity in variant emergence and spread is critical for future outbreak prevention. Here, we investigate how the pace of evolution varies across time and space, identify the origins of sub-lineage emergence, and map the patterns of the inter-regional spread of PRRSV-2 Lineage 1 (L1)-the current dominant lineage in the U.S. We performed comparative phylogeographic analyses on subsets of 19,395 viral ORF5 sequences collected across the U.S. and Canada between 1991 and 2021. The discrete trait analysis of multiple spatiotemporally stratified sampled sets (n = 500 each) was used to infer the ancestral geographic region and dispersion of each sub-lineage. The robustness of the results was compared to that of other modeling methods and subsampling strategies. Generally, the spatial spread and population dynamics varied across sub-lineages, time, and space. The Upper Midwest was a main spreading hotspot for multiple sub-lineages, e.g., L1C and L1F, though one of the most recent emergence events (L1A(2)) spread outwards from the east. An understanding of historical patterns of emergence and spread can be used to strategize disease control and the containment of emerging variants.

11.
Prev Vet Med ; 213: 105854, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36758300

RESUMO

The use of processing fluids to monitor the breeding herd's porcine reproductive and respiratory syndrome (PRRS) status has gained industry acceptance. However, little is known about PRRS virus RT-qPCR detection dynamics in processing fluids and factors that may contribute to maintain PRRS virus in the herd after an outbreak. This study aimed to describe weekly RT-qPCR processing fluid results in breeding herds after an outbreak and to evaluate the proportion of RT-qPCR positive results among parity groups. Processing tissues of 15 first parity (P1), 15 second parity (P2), and 15 third parity or higher (P3+) litters (parity groups) were collected weekly for between 19 and 46 weeks in nine breeding herds. Processing fluids were aggregated, and RT-qPCR tested by parity group weekly. Additionally, a subset of 743 processing fluid samples of litters that formed 50 parity groups, as previously described, were RT-qPCR tested individually at the litter level. The agreement between RT-qPCR results of processing fluid samples of parity groups (15 litters) and results based on individual litter testing was assessed using overall percent of agreement, Kappa statistic, and McNemar test. The association between RT-qPCR results and the parity group was evaluated using a generalized estimating equations model, after accounting for the effects of sampling week, breeding herd PRRS control strategy (i.e., open to replacements v/s closed) and herd. An autoregressive correlation structure was used to account for the repeated samplings within a herd in time. The overall agreement was 98 %, and Kappa statistic 0.955 (McNemar p = 1.0). Sensitivity of parity group processing fluid samples was estimated at 100 % (95 % CI 89-100 %), while specificity was estimated at 94 % (95 % CI 71-100 %). Although P1 aggregated litters had on average a higher proportion of RT-qPCR positive results from outbreak week 25 onwards, the proportion was not significantly different to the one observed for P2 and P3+ aggregated litters (p > 0.13). Additionally, herds that interrupted gilt entry had lower odds of PRRS RT-qPCR positivity than herds that continued entering gilts (OR = 0.35, 95 % CI 0.16-0.78). PRRS virus persistence in processing fluids was not affected by the sow parity effect in most of the breeding herds studied. No evidence of disagreement between RT-qPCR results of an aggregated sample of 15 litters and those of individual litters was observed. This level of litter aggregation testing strategy may be of particular use at the last stages of an elimination program under low PRRS virus prevalence.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Gravidez , Suínos , Animais , Feminino , Síndrome Respiratória e Reprodutiva Suína/epidemiologia , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Paridade , Sus scrofa , Fezes
12.
Animals (Basel) ; 13(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36670849

RESUMO

BACKGROUND: Hesitation on eliminating Porcine Reproductive and Respiratory Syndrome virus (PRRSV) from breeding herds exists since it is difficult to predict how long the herd will remain virus-free. We aimed to estimate the time that breeding herds remained virus-free (naïve) after PRRSV elimination was achieved. METHODS: Production systems voluntarily shared their breeding herds' health status weekly between July 2009 and October 2021. PRRSV incidence rate and the total number of days a breeding herd remained virus-free were estimated. RESULTS: A total of 221 (17%) herds reached the naïve status 273 times. The median time sites remained in this status was approximately two years. The overall PRRS incidence rate after sites achieved a naïve status was 23.43 PRRS outbreaks per 100 farm years. CONCLUSION: Estimates obtained here provide insights on how frequently and for how long sites remain naïve, which contribute to informing management practices for PRRS control.

13.
Vet Rec ; 192(7): e2539, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36545814

RESUMO

BACKGROUND: Sow mortality has become a growing concern in the pig production industry over the past decade. Therefore, we aimed to describe sow mortality and associated factors in a production system in the midwestern USA. METHODS: Mortality records from 2009 to 2018 for four farrow-to-wean farms were described. Environmental, farm- and individual-level factors associated with weekly mortality and individual risk of dying throughout a sow's lifetime were assessed. RESULTS: Deaths occurred at a median of 116 days from last service, or 26 days postpartum. The median parity upon death was two. Overall, the main reasons for death were locomotion (27%) and reproduction (24%). A higher weekly number of deaths was associated with spring (incidence rate ratio [IRR] 1.27, compared to winter). Sows had a higher mortality when they were exposed to at least one porcine reproductive and respiratory syndrome (PRRS) outbreak during their lifetime (IRR 1.55) and when housed in groups (pens) during gestation (IRR 1.32). Conversely, they had  a lower mortality when housed in filtered farms (IRR 0.76), accounting for an interaction term between parity at removal and PRRS outbreak exposure. LIMITATIONS: Issues with data completion and information accuracy were present, and prospective data collection throughout sows' lifetimes is still needed. CONCLUSION: Efforts to reduce infectious diseases within the herd and manage environmental stressors should help reduce mortality.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Gravidez , Suínos , Animais , Feminino , Síndrome Respiratória e Reprodutiva Suína/epidemiologia , Reprodução , Paridade , Doenças dos Suínos/epidemiologia , Surtos de Doenças/veterinária
14.
Front Vet Sci ; 9: 953918, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504858

RESUMO

Introduction: Processing fluids have been recently adopted by the U.S. swine industry as a breeding herd PRRS monitoring tool due to their increased representativeness of animals within the herd. Here, we use the Morrison Swine Health Monitoring Project (MSHMP) database, representative of ~50% of the U.S. swine breeding herd, to describe processing fluids submissions for PRRS diagnosis and their relation to PRRS prevalence and time to stability over time between 2009 and 2020. Methods: An ecological time series Poisson regression modeling the number of status 1 farms and weekly percentage of processing fluids submissions for PRRS diagnosis was done. Time to stability was calculated for sites that detected a PRRS outbreak within the study period and modeled through a proportional hazards mixed effect survival model using production system as a random-effect factor and epiweek as a panel variable. Results: Processing fluids diagnosis submissions increased starting in 2017. The difference between each year's highest and lowest weekly prevalence averaged 10.9% between 2009 and 2017, whereas it averaged 5.0% in 2018-2020 period. Each year's lowest weekly prevalence ranged from 11.3 to 19.5% in 2009-2017 and from 22.4 to 29.2% in 2018-2020. We also detected an increasing proportion of breeding sites that did not reach stability within 1 year of reporting an outbreak (chi-square for trend p < 0.0001). The total time to stability was not associated with the region of the country in which the site was located, the site's air filtration status, its PRRS status before the outbreak, or the different statuses a site achieved to be classified as stable, when accounting for the production system in the multivariate model. However, a higher proportion of system-wide processing fluids use was associated with increased time to stability. Discussion: Altogether, the temporal concurrence of processing fluids used for PRRS virus monitoring suggests that the adoption of this sampling strategy may help explain the changes observed in PRRS status 1 prevalence since 2018, although further studies are still needed.

15.
Porcine Health Manag ; 8(1): 23, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672863

RESUMO

BACKGROUND: In 2013, PEDV was introduced in the United States (U.S.) and rapidly spread across the country. Here we describe the occurrence of PEDV in the growing pig herd of one large U.S. production system through an active surveillance set in place between October 2019 and November 2020 designed to assess disease status upon placement into the growing pig site, before shipping to the slaughter plant and when diarrhea events were present at the site. We also assessed the impact of preventive procedures implemented in PEDV incidence that comprised site-specific equipment segregation and biosecurity changes regarding personnel movement between sites. RESULTS: 36.50% (100/274) of the sites had at least one PEDV introduction event before preventive procedures were implemented, yielding an incidence rate of 2.41 per 100 farm-weeks. Most (63/100) of them occurred in sites where animals were placed negative and PEDV was detected in clinical samples in a median of 8 weeks post placement. After preventive procedures were implemented, the overall PEDV incidence rate dropped to 0.37 per 100 farm-weeks (84.65% reduction, p < 0.001). CONCLUSION: These results highlight the importance of systematic surveillance to identify the burden of diseases, areas of improvement in prevention and control, and to allow the measurement of the impact of policy/protocol changes.

16.
Front Vet Sci ; 9: 846904, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35400102

RESUMO

While the widespread and endemic circulation of porcine reproductive and respiratory syndrome virus type 2 (PRRSV-2) causes persistent economic losses to the U.S. swine industry, unusual increases of severe cases associated with the emergence of new genetic variants are a major source of concern for pork producers. Between 2020 and 2021, such an event occurred across pig production sites in the Midwestern U.S. The emerging viral clade is referred to as the novel sub-lineage 1C (L1C) 1-4-4 variant. This genetic classification is based on the open reading frame 5 (ORF5) gene. However, although whole genome sequence (WGS) suggested that this variant represented the emergence of a new strain, the true evolutionary history of this variant remains unclear. To better elucidate the variant's evolutionary history, we conducted a recombination detection analysis, time-scaled phylogenetic estimation, and discrete trait analysis on a set of L1C-1-4-4 WGSs (n = 19) alongside other publicly published WGSs (n = 232) collected over a 26-year period (1995-2021). Results from various methodologies consistently suggest that the novel L1C variant was a descendant of a recombinant ancestor characterized by recombination at the ORF1a gene between two segments that would be otherwise classified as L1C and L1A in the ORF5 gene. Based on analysis of different WGS fragments, the L1C-1-4-4 variant descended from an ancestor that existed around late 2018 to early 2019, with relatively high substitution rates in the proximal ORF1a as well as ORF5 regions. Two viruses from 2018 were found to be the closest relatives to the 2020-21 outbreak strain but had different recombination profiles, suggesting that these viruses were not direct ancestors. We also assessed the overall frequency of putative recombination amongst ORF5 and other parts of the genome and found that recombination events which leave detectable numbers of descendants are not common. However, the rapid spread and high virulence of the L1C-1-4-4 recombinant variant demonstrates that inter-sub-lineage recombination occasionally found amongst the U.S. PRRSV-2 might be an evolutionary mechanisms that contributed to this emergence. More generally, recombination amongst PRRSV-2 accelerates genetic change and increases the chance of the emergence of high fitness variants.

17.
PLoS One ; 16(11): e0259531, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34797830

RESUMO

Porcine reproductive and respiratory syndrome virus genotype 2 (PRRSV-2) genetic diversity in the U.S. was assessed using a database comprising 10 years' worth of sequence data obtained from swine production systems routine monitoring and outbreak investigations. A total of 26,831 ORF5 PRRSV-2 sequences from 34 production systems were included in this analysis. Within group mean genetic distance (i.e. mean proportion of nucleotide differences within ORF5) per year according to herd type was calculated for all PRRSV-2 sequences. The percent nucleotide difference between each sequence and the ORF5 sequences from four commercially available PRRSV-2 vaccines (Ingelvac PRRS MLV, Ingelvac PRRS ATP, Fostera PRRS, and Prevacent PRRS) within the same lineage over time was used to classify sequences in wild-type or vaccine-like. The mean ORF5 genetic distance fluctuated from 0.09 to 0.13, being generally smaller in years in which there was a relative higher frequency of dominant lineage. Vaccine-like sequences comprised about one fourth of sequences obtained through routine monitoring of PRRS. We found that lineage 5 sequences were mostly Ingelvac PRRS MLV-like. Lineage 8 sequences up to 2011 were 62.9% Ingelvac PRRS ATP-like while the remaining were wild-type viruses. From 2012 onwards, 51.9% of lineage 8 sequences were Ingelvac PRRS ATP-like, 45.0% were Fostera PRRS-like, and only 3.2% were wild-type. For lineage 1 sequences, 0.1% and 1.7% of the sequences were Prevacent PRRS-like in 2009-2018 and 2019, respectively. These results suggest that repeated introductions of vaccine-like viruses through use of modified live vaccines might decrease within-lineage viral diversity as vaccine-like strains become more prevalent. Overall, this compilation of private data from routine monitoring provides valuable information on PRRSV viral diversity.


Assuntos
Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Animais , Variação Genética/genética , Variação Genética/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Suínos , Estados Unidos
18.
Front Vet Sci ; 8: 752938, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733906

RESUMO

We report an ongoing regional outbreak of an emerging porcine reproductive and respiratory syndrome virus (PRRSV2) variant within Lineage 1C affecting 154 breeding and grow-finishing sites in the Midwestern U.S. Transmission seemed to have occurred in two waves, with the first peak of weekly cases occurring between October and December 2020 and the second starting in April 2021. Most of cases occurred within a 120 km radius. Both orf5 and whole genome sequencing results suggest that this represents the emergence of a new variant within Lineage 1C distinct from what has been previously circulating. A case-control study was conducted with 50 cases (sites affected with the newly emerged variant) and 58 controls (sites affected with other PRRSV variants) between October and December 2020. Sites that had a market vehicle that was not exclusive to the production system had 0.04 times the odds of being a case than a control. A spatial cluster (81.42 km radius) with 1.68 times higher the number of cases than controls was found. The average finishing mortality within the first 4 weeks after detection was higher amongst cases (4.50%) than controls (0.01%). The transmission of a highly similar virus between different farms carrying on trough spring rises concerns for the next high transmission season of PRRS.

19.
Front Immunol ; 12: 744183, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659240

RESUMO

The immunopathogenesis of chikungunya virus (CHIKV) infection and the role of acute-phase immune response on joint pain persistence is not fully understood. We investigated the profile of serum chemokine and cytokine in CHIKV-infected patients with acute disease, compared the levels of these biomarkers to those of patients with other acute febrile diseases (OAFD) and healthy controls (HC), and evaluated their role as predictors of chronic arthralgia development. Chemokines and cytokines were measured by flow Cytometric Bead Array. Patients with CHIKV infection were further categorized according to duration of arthralgia (≤ 3 months vs >3 months), presence of anti-CHIKV IgM at acute-phase sample, and number of days of symptoms at sample collection (1 vs 2-3 vs ≥4). Patients with acute CHIKV infection had significantly higher levels of CXCL8, CCL2, CXCL9, CCL5, CXCL10, IL-1ß, IL-6, IL-12, and IL-10 as compared to HC. CCL2, CCL5, and CXCL10 levels were also significantly higher in patients with CHIKV infection compared to patients with OAFD. Patients whose arthralgia lasted > 3 months had increased CXCL8 levels compared to patients whose arthralgia did not (p<0.05). Multivariable analyses further indicated that high levels of CXCL8 and female sex were associated with arthralgia lasting >3 months. Patients with chikungunya and OAFD had similar cytokine kinetics for IL-1ß, IL-12, TNF, IFN-γ, IL-2, and IL-4, although the levels were lower for CHIKV patients. This study suggests that chemokines may have an important role in the immunopathogenesis of chronic chikungunya-related arthralgia.


Assuntos
Artralgia/imunologia , Febre de Chikungunya/imunologia , Interleucina-8/sangue , Reação de Fase Aguda/sangue , Reação de Fase Aguda/imunologia , Adolescente , Adulto , Artralgia/sangue , Febre de Chikungunya/sangue , Febre de Chikungunya/complicações , Doença Crônica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Adulto Jovem
20.
Microbiol Resour Announc ; 10(33): e0026021, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34410155

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) continues to mutate, causing disruptive PRRS outbreaks in farms that lead to reproductive failure and respiratory disease-associated mortality. We present four new PRRSV type 2 variants in the United States belonging to four distinct orf5 sublineages within lineage 1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA