Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hortic Res ; 10(1): uhac235, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36643736

RESUMO

Tomato cultivars show wide variation in nutraceutical folate in ripe fruits, yet the loci regulating folate levels in fruits remain unexplored. To decipher regulatory points, we compared two contrasting tomato cultivars: Periyakulam-1 (PKM-1) with high folate and Arka Vikas (AV) with low folate. The progression of ripening in PKM-1 was nearly similar to AV but had substantially lower ethylene emission. In parallel, the levels of phytohormones salicylic acid, ABA, and jasmonic acid were substantially lower than AV. The fruits of PKM-1 were metabolically distinct from AV, with upregulation of several amino acids. Consistent with higher °Brix, the red ripe fruits also showed upregulation of sugars and sugar-derived metabolites. In parallel with higher folate, PKM-1 fruits also had higher carotenoid levels, especially lycopene and ß-carotene. The proteome analysis showed upregulation of carotenoid sequestration and folate metabolism-related proteins in PKM-1. The deglutamylation pathway mediated by γ-glutamyl hydrolase (GGH) was substantially reduced in PKM-1 at the red-ripe stage. The red-ripe fruits had reduced transcript levels of GGHs and lower GGH activity than AV. Conversely, the percent polyglutamylation of folate was much higher in PKM-1. Our analysis indicates the regulation of GGH activity as a potential target to elevate folate levels in tomato fruits.

2.
Sci Adv ; 7(43): eabf6069, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34669479

RESUMO

The effects of abscisic acid (ABA) on plant growth, development, and response to the environment depend on local ABA concentrations. Here, we show that in Arabidopsis, ABA homeostasis is regulated by two previously unknown ABA transporters. Adenosine triphosphate­binding cassette subfamily G member 17 (ABCG17) and ABCG18 are localized to the plasma membranes of leaf mesophyll and cortex cells to redundantly promote ABA import, leading to conjugated inactive ABA sinks, thus restricting stomatal closure. ABCG17 and ABCG18 double knockdown revealed that the transporters encoded by these genes not only limit stomatal aperture size, conductance, and transpiration while increasing water use efficiency but also control ABA translocation from the shoot to the root to regulate lateral root emergence. Under abiotic stress conditions, ABCG17 and ABCG18 are transcriptionally repressed, promoting active ABA movement and response. The transport mechanism mediated by ABCG17 and ABCG18 allows plants to maintain ABA homeostasis under normal growth conditions.

3.
New Phytol ; 232(5): 1985-1998, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34541677

RESUMO

Plants reduce transpiration to avoid dehydration during drought episodes by stomatal closure and inhibition of canopy growth. Previous studies have suggested that low gibberellin (GA) activity promotes these 'drought avoidance' responses. Using genome editing, molecular, physiological and hormone analyses, we examined if drought regulates GA metabolism in tomato (Solanum lycopersicum) guard cells and leaves, and studied how this affects water loss. Water deficiency inhibited the expression of the GA biosynthesis genes GA20 oxidase1 (GA20ox1) and GA20ox2 and induced the GA deactivating gene GA2ox7 in guard cells and leaf tissue, resulting in reduced levels of bioactive GAs. These effects were mediated by abscisic acid-dependent and abscisic acid-independent pathways, and by the transcription factor TINY1. The loss of GA2ox7 attenuated stomatal response to water deficiency and during soil dehydration, ga2ox7 plants closed their stomata later, and wilted faster than wild-type (WT) M82 cv. Mutations in GA20ox1 and GA20ox2, had no effect on stomatal closure, but reduced water loss due to the mutants' smaller canopy areas. The results suggested that drought-induced GA deactivation in guard cells, contributes to stomatal closure at the early stages of soil dehydration, whereas inhibition of GA synthesis in leaves suppresses canopy growth and restricts transpiration area.


Assuntos
Solanum lycopersicum , Ácido Abscísico , Secas , Giberelinas , Solanum lycopersicum/genética , Estômatos de Plantas , Água
4.
Plant J ; 106(3): 844-861, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33608974

RESUMO

Phototropins, the UVA-blue light photoreceptors, endow plants to detect the direction of light and optimize photosynthesis by regulating positioning of chloroplasts and stomatal gas exchange. Little is known about their functions in other developmental responses. A tomato Non-phototropic seedling1 (Nps1) mutant, bearing an Arg495His substitution in the vicinity of LOV2 domain in phototropin1, dominant-negatively blocks phototropin1 responses. The fruits of Nps1 mutant were enriched in carotenoids, particularly lycopene, compared with its parent, Ailsa Craig. On the contrary, CRISPR/CAS9-edited loss of function phototropin1 mutants displayed subdued carotenoids compared with the parent. The enrichment of carotenoids in Nps1 fruits is genetically linked with the mutation and exerted in a dominant-negative fashion. Nps1 also altered volatile profiles with high levels of lycopene-derived 6-methyl 5-hepten2-one. The transcript levels of several MEP and carotenogenesis pathway genes were upregulated in Nps1. Nps1 fruits showed altered hormonal profiles with subdued ethylene emission and reduced respiration. Proteome profiles showed a causal link between higher carotenogenesis and increased levels of protein protection machinery, which may stabilize proteins contributing to MEP and carotenogenesis pathways. The enhancement of carotenoid content by Nps1 in a dominant-negative fashion offers a potential tool for high lycopene-bearing hybrid tomatoes.


Assuntos
Carotenoides/metabolismo , Frutas/genética , Fototropinas/genética , Solanum lycopersicum/genética , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Frutas/metabolismo , Edição de Genes , Mutação com Perda de Função , Solanum lycopersicum/metabolismo , Redes e Vias Metabólicas/genética , Mutação/genética , Fototropinas/metabolismo
5.
J Exp Bot ; 68(17): 4803-4819, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-29048567

RESUMO

Members of the tomato clade exhibit a wide diversity in fruit color, but the mechanisms governing inter-species diversity of coloration are largely unknown. The carotenoid profiles, carotenogenic gene expression and proteome profiles of green-fruited Solanum habrochaites (SH), orange-fruited S. galapagense, and red-fruited S. pimpinellifolium were compared with cultivated tomato [S. lycopersicum cv. Ailsa Craig (SL)] to decipher the molecular basis of coloration diversity. Green-fruited SH, though it showed normal expression of chromoplast-specific phytoene synthase1 and lycopene ß-cyclase genes akin to orange/red-fruited species, failed to accumulate lycopene and ß-carotene. The SH phytoene synthase1 cDNA encoded an enzymatically active protein, whereas the lycopene ß-cyclase cDNA was barely active. Consistent with its green-fruited nature, SH's fruits retained chloroplast structure and PSII activity, and had impaired chlorophyll degradation with high pheophorbide a levels. Comparison of the fruit proteomes with SL revealed retention of the proteome complement related to photosynthesis in SH. Targeted peptide monitoring revealed a low abundance of key carotenogenic and sequestration proteins in SH compared with tomato. The green-fruitedness of SH appears to stem from blocks at several critical steps regulating fruit-specific carotenogenesis namely the absence of chloroplast to chromoplast transformation, block in carotenoid biosynthesis, and a dearth of carotenoid sequestering proteins.


Assuntos
Carotenoides/metabolismo , Frutas/fisiologia , Expressão Gênica , Proteínas de Plantas/genética , Proteoma , Solanum/fisiologia , Cor , Pigmentos Biológicos/metabolismo , Proteínas de Plantas/metabolismo , Solanum/genética
6.
PLoS One ; 11(4): e0152907, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27077652

RESUMO

Domestication of tomato has resulted in large diversity in fruit phenotypes. An intensive phenotyping of 127 tomato accessions from 20 countries revealed extensive morphological diversity in fruit traits. The diversity in fruit traits clustered the accessions into nine classes and identified certain promising lines having desirable traits pertaining to total soluble salts (TSS), carotenoids, ripening index, weight and shape. Factor analysis of the morphometric data from Tomato Analyzer showed that the fruit shape is a complex trait shared by several factors. The 100% variance between round and flat fruit shapes was explained by one discriminant function having a canonical correlation of 0.874 by stepwise discriminant analysis. A set of 10 genes (ACS2, COP1, CYC-B, RIN, MSH2, NAC-NOR, PHOT1, PHYA, PHYB and PSY1) involved in various plant developmental processes were screened for SNP polymorphism by EcoTILLING. The genetic diversity in these genes revealed a total of 36 non-synonymous and 18 synonymous changes leading to the identification of 28 haplotypes. The average frequency of polymorphism across the genes was 0.038/Kb. Significant negative Tajima'D statistic in two of the genes, ACS2 and PHOT1 indicated the presence of rare alleles in low frequency. Our study indicates that while there is low polymorphic diversity in the genes regulating plant development, the population shows wider phenotype diversity. Nonetheless, morphological and genetic diversity of the present collection can be further exploited as potential resources in future.


Assuntos
Frutas/crescimento & desenvolvimento , Frutas/genética , Genômica , Fenótipo , Polimorfismo de Nucleotídeo Único , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Frutas/metabolismo , Genes de Plantas/genética , Solanum lycopersicum/metabolismo
7.
Plant Cell Environ ; 37(7): 1688-702, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24433205

RESUMO

Tomato fruit ripening is a complex metabolic process regulated by a genetical hierarchy. A subset of this process is also modulated by light signalling, as mutants encoding negative regulators of phytochrome signal transduction show higher accumulation of carotenoids. In tomato, phytochromes are encoded by a multi-gene family, namely PHYA, PHYB1, PHYB2, PHYE and PHYF; however, their contribution to fruit development and ripening has not been examined. Using single phytochrome mutants phyA, phyB1 and phyB2 and multiple mutants phyAB1, phyB1B2 and phyAB1B2, we compared the on-vine transitory phases of ripening until fruit abscission. The phyAB1B2 mutant showed accelerated transitions during ripening, with shortest time to fruit abscission. Comparison of transition intervals in mutants indicated a phase-specific influence of different phytochrome species either singly or in combination on the ripening process. Examination of off-vine ripened fruits indicated that ripening-specific carotenoid accumulation was not obligatorily dependent upon light and even dark-incubated fruits accumulated carotenoids. The accumulation of transcripts and carotenoids in off-vine and on-vine ripened mutant fruits indicated a complex and shifting phase-dependent modulation by phytochromes. Our results indicate that, in addition to regulating carotenoid levels in tomato fruits, phytochromes also regulate the time required for phase transitions during ripening.


Assuntos
Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Fitocromo/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Vias Biossintéticas/genética , Carotenoides/metabolismo , Clorofila/metabolismo , Etilenos/metabolismo , Frutas/genética , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Mutação/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo
8.
Plant Physiol ; 161(4): 2085-101, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23400702

RESUMO

Tomato (Solanum lycopersicum) high-pigment mutants with lesions in diverse loci such as DNA Damage-Binding Protein1 (high pigment1 [hp1]), Deetiolated1 (hp2), Zeaxanthin Epoxidase (hp3), and Intense pigment (Ip; gene product unknown) exhibit increased accumulation of fruit carotenoids coupled with an increase in chloroplast number and size. However, little is known about the underlying mechanisms exaggerating the carotenoid accumulation and the chloroplast number in these mutants. A comparison of proteome profiles from the outer pericarp of hp1 mutant and wild-type (cv Ailsa Craig) fruits at different developmental stages revealed at least 72 differentially expressed proteins during ripening. Hierarchical clustering grouped these proteins into three clusters. We found an increased abundance of chromoplast-specific carotenoid-associated protein (CHRC) in hp1 fruits at red-ripe stage that is also reflected in its transcript level. Western blotting using CHRC polyclonal antibody from bell pepper (Capsicum annuum) revealed a 2-fold increase in the abundance of CHRC protein in the red-ripe stage of hp1 fruits compared with the wild type. CHRC levels in hp2 were found to be similar to that of hp1, whereas hp3 and Ip showed intermediate levels to those in hp1, hp2, and wild-type fruits. Both CHRC and carotenoids were present in the isolated plastoglobules. Overall, our results suggest that loss of function of DDB1, DET1, Zeaxanthin Epoxidase, and Ip up-regulates CHRC levels. Increase in CHRC levels may contribute to the enhanced carotenoid content in these high-pigment fruits by assisting in the sequestration and stabilization of carotenoids.


Assuntos
Carotenoides/metabolismo , Frutas/metabolismo , Genes de Plantas/genética , Proteínas de Plantas/metabolismo , Plastídeos/metabolismo , Solanum lycopersicum/metabolismo , Vias Biossintéticas/genética , Western Blotting , Carotenoides/biossíntese , Análise por Conglomerados , Eletroforese em Gel Bidimensional , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Microscopia Confocal , Dados de Sequência Molecular , Mutação/genética , Especificidade de Órgãos , Fenótipo , Proteoma/metabolismo , Biologia de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA