Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Clin Exp Immunol ; 208(2): 245-254, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35395673

RESUMO

Cytomegalovirus (CMV) genome is highly variable and heterosubtypic immunity should be considered in vaccine development since it can enhance protection in a cross-reactive manner. Here, we developed a protein array to evaluate heterosubtypic immunity to CMV glycoprotein B (gB) in natural infection and vaccination. DNA sequences of four antigenic domains (AD1, AD2, AD4/5, and AD5) of gB were amplified from six reference and 12 clinical CMV strains, and the most divergent genotypes were determined by phylogenetic analysis. Assigned genotypes were in vitro translated and immobilized on protein array. Then, we tested immune response of variable serum groups (primarily infected patients, reactivated CMV infections and healthy individuals with latent CMV infection, as well gB-vaccinated rabbits) with protein in situ array (PISA). Serum antibodies of all patient cohorts and gB-vaccinated rabbits recognized many genetic variants of ADs on protein array, including but not limited to the subtype of infecting strain. High-grade cross-reactivity was observed. In several patients, we observed none or neglectable immune response to AD1 and AD2, while the same patients showed high antibody response to AD4/5 and AD5. Among the primary infected patients, AD5 was the predominant AD, in antibody response. The most successful CMV vaccine to date contains gB and demonstrates only 50% efficacy. In this study, we showed that heterosubtypic and cross-reactive immunity to CMV gB is extensive. Therefore, the failure of CMV gB vaccines cannot be explained by a highly, strain-specific immunity. Our observations suggest that other CMV antigens should be addressed in vaccine design.


Assuntos
Anticorpos Antivirais , Infecções por Citomegalovirus , Animais , Citomegalovirus , Humanos , Filogenia , Coelhos , Proteínas do Envelope Viral/genética
2.
Synth Syst Biotechnol ; 6(4): 402-413, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34901479

RESUMO

In the rapidly expanding field of peptide therapeutics, the short in vivo half-life of peptides represents a considerable limitation for drug action. D-peptides, consisting entirely of the dextrorotatory enantiomers of naturally occurring levorotatory amino acids (AAs), do not suffer from these shortcomings as they are intrinsically resistant to proteolytic degradation, resulting in a favourable pharmacokinetic profile. To experimentally identify D-peptide binders to interesting therapeutic targets, so-called mirror-image phage display is typically performed, whereby the target is synthesized in D-form and L-peptide binders are screened as in conventional phage display. This technique is extremely powerful, but it requires the synthesis of the target in D-form, which is challenging for large proteins. Here we present finDr, a novel web server for the computational identification and optimization of D-peptide ligands to any protein structure (https://findr.biologie.uni-freiburg.de/). finDr performs molecular docking to virtually screen a library of helical 12-mer peptides extracted from the RCSB Protein Data Bank (PDB) for their ability to bind to the target. In a separate, heuristic approach to search the chemical space of 12-mer peptides, finDr executes a customizable evolutionary algorithm (EA) for the de novo identification or optimization of D-peptide ligands. As a proof of principle, we demonstrate the validity of our approach to predict optimal binders to the pharmacologically relevant target phenol soluble modulin alpha 3 (PSMα3), a toxin of methicillin-resistant Staphylococcus aureus (MRSA). We validate the predictions using in vitro binding assays, supporting the success of this approach. Compared to conventional methods, finDr provides a low cost and easy-to-use alternative for the identification of D-peptide ligands against protein targets of choice without size limitation. We believe finDr will facilitate D-peptide discovery with implications in biotechnology and biomedicine.

3.
Nat Commun ; 12(1): 1577, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707427

RESUMO

COVID-19 is a severe acute respiratory disease caused by SARS-CoV-2, a new recently emerged sarbecovirus. This virus uses the human ACE2 enzyme as receptor for cell entry, recognizing it with the receptor binding domain (RBD) of the S1 subunit of the viral spike protein. We present the use of phage display to select anti-SARS-CoV-2 spike antibodies from the human naïve antibody gene libraries HAL9/10 and subsequent identification of 309 unique fully human antibodies against S1. 17 antibodies are binding to the RBD, showing inhibition of spike binding to cells expressing ACE2 as scFv-Fc and neutralize active SARS-CoV-2 virus infection of VeroE6 cells. The antibody STE73-2E9 is showing neutralization of active SARS-CoV-2 as IgG and is binding to the ACE2-RBD interface. Thus, universal libraries from healthy human donors offer the advantage that antibodies can be generated quickly and independent from the availability of material from recovering patients in a pandemic situation.


Assuntos
Enzima de Conversão de Angiotensina 2/imunologia , Anticorpos Neutralizantes/genética , Anticorpos Antivirais/genética , COVID-19/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2/química , Animais , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/isolamento & purificação , Afinidade de Anticorpos , COVID-19/epidemiologia , Linhagem Celular , Chlorocebus aethiops , Biblioteca Gênica , Voluntários Saudáveis , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Imunoglobulina G/genética , Imunoglobulina G/isolamento & purificação , Modelos Moleculares , Mutação , Testes de Neutralização , Pandemias , Biblioteca de Peptídeos , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Células Vero
4.
Chembiochem ; 20(12): 1554-1562, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-30730095

RESUMO

Protein microarrays are essential to understand complex protein interaction networks. Their production, however, is a challenge and renders this technology unattractive for many laboratories. Recent developments in cell-free protein microarray generation offer new opportunities, but are still expensive and cumbersome in practice. Herein, we describe a cost-effective and user-friendly method for the cell-free production of protein microarrays. From a polydimethylsiloxane (PDMS) flow cell containing an expressible DNA microarray, proteins of interest are synthesised by cell-free expression and then immobilised on a capture surface. The resulting protein microarray can be regarded as a "copy" of the DNA microarray. 2 His6 - and Halo-tagged fluorescent reference proteins were used to demonstrate the functionality of nickel nitrilotriacetic acid (Ni-NTA) and Halo-bind surfaces in this copy system. The described process can be repeated several times on the same DNA microarray. The identity and functionality of the proteins were proven during the copy process by their fluorescence and on the surface through a fluorescent immune assay. Also, single-colour reflectometry (SCORE) was applied to show that, on such copied arrays, real-time binding kinetic measurements were possible.


Assuntos
Análise Serial de Proteínas/métodos , Proteínas/análise , Fluorescência , Ácido Nitrilotriacético/análogos & derivados , Ácido Nitrilotriacético/química , Compostos Organometálicos/química , Proteínas/química , Propriedades de Superfície
5.
SLAS Technol ; 22(4): 437-446, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27418371

RESUMO

This system allows the high-throughput protein interaction analysis on microarrays. We apply the interference technology 1λ-imaging reflectometric interferometry (iRIf) as a label-free detection method and create microfluidic flow cells in microscope slide format for low reagent consumption and lab work compatibility. By now, most prominent for imaging label-free interaction analyses on microarrays are imaging surface plasmon resonance (SPR) methods, quartz crystal microbalance, or biolayer interferometry. SPR is sensitive against temperature drifts and suffers from plasmon crosstalk, and all systems lack array size (maximum 96 spots). Our detection system is robust against temperature drifts. Microarrays are analyzed with a spatial resolution of 7 µm and time resolution of ≤50 fps. System sensitivity is competitive, with random noise of <5 × 10-5 and baseline drift of <3 × 10-6. Currently available spotting technologies limit array sizes to ~4 spots/mm2 (1080 spots/array); our detection system would allow ~40 spots/mm2 (10,800 spots/array). The microfluidic flow cells consist of structured PDMS inlays sealed by versatilely coated glass slides immobilizing the microarray. The injection protocol determines reagent volumes, priming rates, and flow cell temperatures for up to 44 reagents; volumes of ≤300 µL are validated. The system is validated physically by the biotinylated bovine serum albumin streptavidin assay and biochemically by thrombin aptamer interaction analysis, resulting in a KD of ~100 nM.


Assuntos
Interferometria/métodos , Análise em Microsséries/métodos , Microfluídica/métodos , Proteínas/metabolismo , Aptâmeros de Nucleotídeos/metabolismo , Biotina/metabolismo , Análise em Microsséries/instrumentação , Microfluídica/instrumentação , Ligação Proteica , Sensibilidade e Especificidade , Soroalbumina Bovina/metabolismo , Estreptavidina/metabolismo , Trombina/metabolismo
6.
J Virol ; 88(1): 263-71, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24155389

RESUMO

The nuclear export protein (NEP) (NS2) of the highly pathogenic human-derived H5N1 strain A/Thailand/1(KAN-1)/2004 with the adaptive mutation M16I greatly enhances the polymerase activity in human cells in a concentration-dependent manner. While low NEP levels enhance the polymerase activity, high levels are inhibitory. To gain insights into the underlying mechanism, we analyzed the effect of NEP deletion mutants on polymerase activity after reconstitution in human cells. This revealed that the polymerase-enhancing function of NEP resides in the C-terminal moiety and that removal of the last three amino acids completely abrogates this activity. Moreover, compared to full-length NEP, the C-terminal moiety alone exhibited significantly higher activity and seemed to be deregulated, since even the highest concentration did not result in an inhibition of polymerase activity. To determine transient interactions between the N- and C-terminal domains in cis, we fused both ends of NEP to a split click beetle luciferase and performed fragment complementation assays. With decreasing temperature, increased luciferase activity was observed, suggesting that intramolecular binding between the C- and N-terminal domains is preferentially stabilized at low temperatures. This stabilizing effect was significantly reduced with the adaptive mutation M16I or a combination of adaptive mutations (M16I, Y41C, and E75G), which further increased polymerase activity also at 34°C. We therefore propose a model in which the N-terminal moiety of NEP exerts an inhibitory function by back-folding to the C-terminal domain. In this model, adaptive mutations in NEP decrease binding between the C- and N-terminal domains, thereby allowing the protein to "open up" and become active already at a low temperature.


Assuntos
Núcleo Celular/metabolismo , Virus da Influenza A Subtipo H5N1/metabolismo , Mutação , Proteínas não Estruturais Virais/genética , Células HEK293 , Humanos , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/fisiologia , Conformação Proteica , Dobramento de Proteína , Transporte Proteico , Temperatura , Proteínas não Estruturais Virais/química , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA