Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 323(2): H336-H349, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35749718

RESUMO

Aging is a nonmodifiable risk factor for cardiovascular disease associated with arterial stiffening and endothelial dysfunction. We hypothesized that sex differences exist in vascular aging processes and would be attenuated by global deletion of the G protein-coupled estrogen receptor. Blood pressure was measured by tail-cuff plethysmography, pulse wave velocity (PWV) and echocardiography were assessed with high-resolution ultrasound, and small vessel reactivity was measured using wire myography in adult (25 wk) and middle-aged (57 wk) male and female mice. Adult female mice displayed lower blood pressure and PWV, but this sex difference was absent in middle-aged mice. Aging significantly increased PWV but not blood pressure in both sexes. Adult female carotids were more distensible than males, but this sex difference was lost during aging. Acetylcholine-induced relaxation was greater in female than male mice at both ages, and only males showed aging-induced changes in cardiac hypertrophy and function. GPER deletion removed the sex difference in PWV and ex vivo stiffness in adult mice. The sex difference in blood pressure was absent in KO mice and was associated with endothelial dysfunction in females. These findings indicate that the impact of aging on arterial stiffening and endothelial function is not the same in male and female mice. Moreover, nongenomic estrogen signaling through GPER impacted vascular phenotype differently in male and female mice. Delineating sex differences in vascular changes during healthy aging is an important first step in improving early detection and sex-specific treatments in our aging population.NEW & NOTEWORTHY Indices of vascular aging were different in male and female mice. Sex differences in pulse wave velocity, blood pressure, and large artery stiffness were abrogated in middle-aged mice, but the female advantage in resistance artery vasodilator function was maintained. GPER deletion abrogated these sex differences and significantly reduced endothelial function in adult female mice. Additional studies are needed to characterize sex differences in vascular aging to personalize early detection and treatment for vascular diseases.


Assuntos
Análise de Onda de Pulso , Rigidez Vascular , Animais , Pressão Sanguínea/fisiologia , Artérias Carótidas/diagnóstico por imagem , Feminino , Masculino , Camundongos , Receptores Acoplados a Proteínas G/genética , Caracteres Sexuais , Rigidez Vascular/fisiologia
2.
J Biomech Eng ; 144(6)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35425969

RESUMO

Higher reproductive age is associated with an increased risk of gestational diabetes, pre-eclampsia, and severe vaginal tearing during delivery. Further, menopause is associated with vaginal stiffening. However, the mechanical properties of the vagina during reproductive aging before the onset of menopause are unknown. Therefore, the first objective of this study was to quantify the biaxial mechanical properties of the nulliparous murine vagina with reproductive aging. Menopause is further associated with a decrease in elastic fiber content, which may contribute to vaginal stiffening. Hence, our second objective was to determine the effect of elastic fiber disruption on the biaxial vaginal mechanical properties. To accomplish this, vaginal samples from CD-1 mice aged 2-14 months underwent extension-inflation testing protocols (n = 64 total; n = 16/age group). Then, half of the samples were randomly allocated to undergo elastic fiber fragmentation via elastase digestion (n = 32 total; 8/age group) to evaluate the role of elastic fibers. The material stiffness increased with reproductive age in both the circumferential and axial directions within the control and elastase-treated vaginas. The vagina demonstrated anisotropic mechanical behavior, and anisotropy increased with age. In summary, vaginal remodeling with reproductive age included increased direction-dependent material stiffness, which further increased following elastic fiber disruption. Further work is needed to quantify vaginal remodeling during pregnancy and postpartum with reproductive aging to better understand how age-related vaginal remodeling may contribute to an increased risk of vaginal tearing.


Assuntos
Pelve , Vagina , Envelhecimento , Animais , Anisotropia , Feminino , Camundongos , Elastase Pancreática , Gravidez , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA