RESUMO
This study evaluates the effectiveness of the UCSF Summer Student Research Program (SSRP) in enhancing research-related skills, academic outcomes, and post-baccalaureate aspirations of underrepresented minority (URM) and non-URM undergraduate students in biomedical sciences and STEM fields. The SSRP, spanning 9 weeks, provides immersive research experiences, structured mentorship, trainings, seminars, and STEM education. Pre- and post-program survey data from eight cohorts (N = 315) were analyzed using paired-sample t-tests, MANOVA, and content analysis. Results demonstrate significant gains in critical thinking skills, research abilities, science identity, applied science skills, and readiness for a research career. Notably, participants exhibited improvements in understanding the research process, scientific thinking, science writing, and problem-solving. URM and non-URM students experienced similar gains, highlighting the program's inclusivity. The SSRP also positively influenced students' postgraduate aspirations. Some participants expressed heightened interest in pursuing Master of Arts, Ph.D., and M.D. degrees, indicating increased clarity and motivation towards advanced education and research careers. Furthermore, 87% of participants expressed a high likelihood of engaging in future research endeavors, underscoring the program's sustained impact on research interest. This study underscores the transformative potential of a well-structured, intensive summer research program in significantly enhancing academic outcomes for URM and non-URM students alike. These findings align with the persistence framework, emphasizing the importance of early research experiences, active learning, and learning communities in fostering student success. The SSRP's effectiveness in improving research skills and post-baccalaureate aspirations suggests its potential in diversifying the STEM fields, biomedical sciences and health-related professions.
RESUMO
Zinc deficiency continues to be a major concern for global public health. The zinc status of a target population is typically estimated by measuring circulating zinc levels, but the sampling procedures are not standardized and thus may result in analytical discrepancies. To examine this, we designed a study that controlled most of the technical parameters in order to focus on five pre-analytical variables reported to influence the measurement of zinc in blood samples, including (1) blood draw site (capillary or venous), (2) blood sample matrix (plasma or serum), (3) blood collection tube manufacturer (Becton, Dickinson and Company or Sarstedt AG & Co), (4) blood processing time (0, 4, or 24 hours), and (5) blood holding temperatures (4°C, 20°C, or 37°C). A diverse cohort of 60 healthy adults were recruited to provide sequential capillary and venous blood samples, which were carefully processed under a single chain of custody and measured for zinc content using inductively coupled plasma optical emission spectrometry. When comparing blood draw sites, the mean zinc content of capillary samples was 0.054 mg/L (8%; p<0.0001) higher than venous blood from the same donors. When comparing blood sample matrices, the mean zinc content of serum samples was 0.029 mg/L (5%; p<0.0001) higher than plasma samples from the same donors. When comparing blood collection tube manufacturer, the mean zinc content from venous blood samples did not differ between venders, but the mean zinc content from BD capillary plasma was 0.036 mg/L (6%; p<0.0001) higher than Sarstedt capillary plasma from the same donors. When comparing processing times, the mean zinc content of plasma and serum samples was 5-12% higher (p<0.0001) in samples processed 4-24 hour after collection. When comparing holding temperatures, the mean zinc content of plasma and serum samples was 0.5-7% higher (p = 0.0007 or p = 0.0061, respectively) in samples temporarily held at 20°C or 37°C after collection. Thus even with the same donors and blood draws, significant differences in zinc content were observed with different draw sites, tube types, and processing procedures, demonstrating that key pre-analytic variables can have an impact on zinc measurement, and subsequent classification of zinc status. Minimizing these pre-analytical variables is important for generating best practice guidelines for assessment of zinc status.
Assuntos
Desnutrição , Plasma , Adulto , Humanos , Zinco , Flebotomia , Temperatura CorporalRESUMO
Background/Aims: Cells adapt to chronic extracellular hypotonicity by altering metabolism. Corresponding effects of sustained hypotonic exposure at the whole-person level remain to be confirmed and characterized in clinical and population-based studies. This analysis aimed to 1) describe changes in urine and serum metabolomic profiles associated with four weeks of sustained > +1 L/d drinking water in healthy, normal weight, young men, 2) identify metabolic pathways potentially impacted by chronic hypotonicity, and 3) explore if effects of chronic hypotonicity differ by type of specimen and/or acute hydration condition. Materials: Untargeted metabolomic assays were completed for specimen stored from Week 1 and Week 6 of the Adapt Study for four men (20-25 years) who changed hydration classification during that period. Each week, first-morning urine was collected after overnight food and water restriction, and urine (t+60 min) and serum (t+90 min) were collected after a 750 mL bolus of drinking water. Metaboanalyst 5.0 was used to compare metabolomic profiles. Results: In association with four weeks of > + 1 L/d drinking water, urine osmolality decreased below 800 mOsm/kg H2O and saliva osmolality decreased below 100 mOsm/kg H2O. Between Week 1 and Week 6, 325 of 562 metabolic features in serum changed by 2-fold or more relative to creatinine. Based on hypergeometric test p-value <0.05 or Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway impact factor >0.2, the sustained > + 1 L/d of drinking water was associated with concurrent changes in carbohydrate, protein, lipid, and micronutrient metabolism, a metabolomic pattern of carbohydrate oxidation via the tricarboxylic acid (TCA) cycle, instead of glycolysis to lactate, and a reduction of chronic disease risk factors in Week 6. Similar metabolic pathways appeared potentially impacted in urine, but the directions of impact differed by specimen type. Conclusion: In healthy, normal weight, young men with initial total water intake below 2 L/d, sustained > + 1 L/d drinking water was associated with profound changes in serum and urine metabolomic profile, which suggested normalization of an aestivation-like metabolic pattern and a switch away from a Warburg-like pattern. Further research is warranted to pursue whole-body effects of chronic hypotonicity that reflect cell-level effects and potential beneficial effects of drinking water on chronic disease risk.
RESUMO
Anemia is a continuing global public health concern and a priority for international action. The prevalence of anemia is estimated from the hemoglobin (Hb) levels within target populations, yet the procedures for measuring Hb are not standardized and different approaches may result in discrepancies. Several analytical variables have been proposed to influence Hb measurements, but it is difficult to understand the impact on specific variables from large population or field studies. Therefore, we designed a highly controlled protocol that minimized most technical parameters to specifically investigate the impact of blood draw site and analytic device on Hb measurements. A diverse cohort of sixty healthy adults each provided a sequential capillary and venous blood sample that were measured for Hb using an automated hematology analyzer (ADVIA-2120) and two point-of-care devices (HemoCue 201+ and HemoCue 301). Comparing blood draw sites, the mean Hb content was 0.32-0.47 g/dL (2-4%) higher in capillary compared to venous blood from the same donors. Comparing different Hb measuring instruments, the mean Hb content was 0.19-0.46 g/dL (1-4%) higher measured with HemoCue devices compared to ADVIA-2120 in both capillary and venous blood from the same donors. The maximum variance in measurement was also higher with HemoCue devices using blood from venous (5-6% CV) and capillary (21-25% CV) sites compared to ADVIA-2120 (0.6-2% CV). Other variables including blood collection tube manufacturer did not affect mean Hb content. These results demonstrate that even when most technical variables are minimized, the blood draw site and the analytical device can have a small but statistically significant effect on the mean and dispersion of Hb measurements. Even in this study, the few participants identified as mildly anemic using venous blood measured by ADVIA-2120 would not have been classified as anemic using their capillary blood samples or point-of-care analyzers. Thus, caution is warranted when comparing Hb values between studies having differences in blood draw site and Hb measuring device. Future anemia testing should maintain consistency in these analytical variables.
Assuntos
Testes Hematológicos , Veias , Adulto , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , Saúde Pública , HemoglobinasRESUMO
BACKGROUND: The World Health Organization considers climate change an urgent global health challenge requiring prioritised action. A recent global survey reported that only 15% of medical schools have incorporated climate change and health into the curriculum. OBJECTIVES: This research study was carried out from November 2020 and April 2021 using the Planetary Health Report Card (PHRC) initiative to assess the current level of planetary health teaching in medical schools in the Republic of Ireland. PHRC is a student-led international public initiative, which aims to compare medical schools using a planetary health report card. The assessment was submitted as a final report to the Irish Medical Council and to the medical schools involved. RESULTS: Very few learning outcomes in Irish medical curricula directly address or include the concept of planetary health. Inclusion of specific topics remains reliant on individual lecturer interest. While most universities have excellent research centres which cover specific aspects of planetary health, the links between these institutes and medical schools have not been created. CONCLUSIONS: Overall, there are promising examples of planetary health themes throughout the current Irish medical curricula, however, these remain poorly implemented or embedded within the curricula. Medical schools should incorporate education on planetary health to ensure graduates are equipped as to become medical leaders practising in a changing world.
Assuntos
Educação de Graduação em Medicina , Educação Médica , Humanos , Irlanda , Currículo , Faculdades de Medicina , Educação em Saúde , Inquéritos e QuestionáriosRESUMO
Professor Bruce Ames demonstrated that nutritional recommendations should be adjusted in order to 'tune-up' metabolism and reduce mitochondria decay, a hallmark of aging and many disease processes. A major subset of tunable nutrients are the minerals, which despite being integral to every aspect of metabolism are often deficient in the typical Western diet. Mitochondria are particularly rich in minerals, where they function as essential cofactors for mitochondrial physiology and overall cellular health. Yet substantial knowledge gaps remain in our understanding of the form and function of these minerals needed for metabolic harmony. Some of the minerals have known activities in the mitochondria but with incomplete regulatory detail, whereas other minerals have no established mitochondrial function at all. A comprehensive metallome of the mitochondria is needed to fully understand the patterns and relationships of minerals within metabolic processes and cellular development. This brief overview serves to highlight the current progress towards understanding mineral homeostasis in the mitochondria and to encourage more research activity in key areas. Future work may likely reveal that adjusting the amounts of specific nutritional minerals has longevity benefits for human health.
Assuntos
Longevidade , Mitocôndrias , Diferenciação Celular , Humanos , Minerais/metabolismo , Mitocôndrias/metabolismo , OxirreduçãoRESUMO
BACKGROUND: Nutritional deficiencies in children with cancer at time of diagnosis and during treatment may negatively affect disease outcome and increase treatment-related toxicity. Yet zinc, an essential nutrient important for supporting immune function and known for reducing diarrheal episodes, is rarely assessed in these children. PROCEDURES: Fifty children (1 month to 18 years) with recently diagnosed cancer were enrolled in this study. An age and gender matched control group (n = 50) was also recruited. Plasma and urinary zinc, plasma copper, and C-reactive protein (CRP) levels were measured at baseline, 3, and 6 months following diagnosis. A retrospective review of the toxicity profile was performed in the cohort of children with cancer for the first 4 years after initial diagnosis. RESULTS: CRP and plasma copper (both acute-phase reactants) were elevated in patients with cancer compared to controls at baseline, both p < .03. Plasma zinc levels were not significantly different from controls at baseline, but decreased by 11% in the cancer group over 6 months of treatment, 83.2 ± 15.6 to 74.3 ± 14.8 µg/dl, p = .01. Plasma zinc dropped to deficient levels in 35% of cases over the initial 6 months. Zinc deficiency at 6 months was related to an increased incidence of severe diarrhea during 4 years of follow-up, p < .001. CONCLUSIONS: Zinc deficiency is an underrecognized problem among patients undergoing treatment for cancer and is associated with severe diarrhea. Further studies are needed to evaluate causes for zinc deficiency, related effects, and a possible role for zinc supplementation.
Assuntos
Desnutrição , Neoplasias , Zinco/deficiência , Adolescente , Proteína C-Reativa , Criança , Pré-Escolar , Cobre/sangue , Diarreia/etiologia , Humanos , Lactente , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Estudos RetrospectivosRESUMO
In 2020, STEM training programs across the country were challenged to provide support to students during a nation-wide shutdown of research institutions in response to the COVID-19 pandemic. Five U.S. high school science internship programs funded by the Doris Duke Charitable Foundation, with a history of collaboration, developed innovative strategies for distance-learning (DL) opportunities during the pandemic. Forty under-represented high school and undergraduate students were paired with scientific mentors at one of the programs for a DL scientific internship. Summer training combined synchronous and asynchronous programming with research projects adapted for DL success. Ninety-five percent of students who participated were satisfied with the training experience, nearly identical to exit survey responses from 2019 when our programs were held in-person. More students were interested in pursuing a career in research at the end of the program and credited the DL experience with increasing interest in research careers. Some DL elements were ideal for underrepresented youth, including a more flexible schedule and elimination of cost and time for travel. While the lack of in-person instruction challenged our ability to create a strong student community, we found that preparation, communication, and flexibility were key elements to these successful DL programs. The increased emphasis on interpretation and analysis of data, rather than data collection, enhanced student learning. This manuscript highlights the changes made to our curricula, elements which were most successful, and recommends strategies for future distance-learning programming.
RESUMO
Plasma zinc concentrations (PZC) have been shown to significantly increase during zinc supplementation. This study investigated the effects of daily preventive zinc supplementation on hair and nail zinc concentrations compared with a control group. In a randomized controlled trial, 6- to 23-month-old children (n = 3407) in Lao PDR were randomly assigned to one of four groups and followed for ~ 36 weeks: daily preventive zinc dispersible tablet (7 mg/d; PZ), daily micronutrient powder (10 mg zinc/d; MNP), therapeutic zinc supplements for diarrhea treatment (20 mg/d for 10 days; TZ), or daily placebo powder (Control). Plasma, hair, and nail zinc concentrations were assessed in a sub-sample of participants (n = 457) at baseline and endline. At baseline, 75% of children had low PZC (< 65 µg/dL). At endline, geometric mean (95% CI) PZC were greater in the PZ and MNP groups compared with the TZ and control groups (P < 0.01), but hair zinc concentrations did not differ among groups (P = 0.99). Nail zinc concentrations were marginally higher in the PZ (115.8 (111.6, 119.9) µg/g) and the MNP (117.8 (113.3, 122.3) µg/g) groups than in the TZ group (110.4 (106.0, 114.8) µg/g; P = 0.055) at endline. This study does not support the use of hair zinc as a biomarker of zinc exposure in young children. However, it provides some evidence that zinc concentrations in nails may respond to supplemental zinc interventions and supports the need for collecting additional data on this emerging biomarker.
Assuntos
Unhas , Zinco , Criança , Pré-Escolar , Diarreia , Suplementos Nutricionais , Método Duplo-Cego , Humanos , Lactente , MicronutrientesAssuntos
Glicemia/análise , Suplementos Nutricionais , Homeostase , Talassemia/terapia , Sulfato de Zinco/uso terapêutico , Adolescente , Adulto , Biomarcadores , Peptídeo C/sangue , Criança , Complicações do Diabetes/complicações , Complicações do Diabetes/metabolismo , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Feminino , Teste de Tolerância a Glucose , Humanos , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Células Secretoras de Insulina/metabolismo , Quelantes de Ferro/uso terapêutico , Masculino , Metformina/uso terapêutico , Pessoa de Meia-Idade , Projetos Piloto , Talassemia/complicações , Talassemia/tratamento farmacológico , Talassemia/metabolismo , Adulto Jovem , Zinco/sangue , Zinco/deficiência , Zinco/urina , Sulfato de Zinco/administração & dosagemRESUMO
When consumed as whole grain, wheat has a high nutrient density that contributes to a healthy diet. Yet, products labeled as whole wheat can still contain a substantial amount of refined grain leading to the confusion for consumers, so a method was designed to determine the whole grain status within wheat-based foods. Wheat germ agglutinin (WGA), a lectin found in the germ tissue of wheat kernels, was evaluated as a biomarker of whole grain wheat. WGA content strongly correlated with the percentage of whole wheat within premade mixtures of whole and refined (white) flours. Then, commercial flours labeled as whole wheat were tested for WGA content and found to contain up to 40% less WGA compared to a whole grain standard. Commercial pasta products labeled as whole wheat were also tested for WGA content and found to contain up to 90% less WGA compared to a whole grain standard. The differences in WGA content were not likely due to varietal differences alone, as the WGA content in common varieties used in domestic wheat flour production varied less than 25%. The levels of other constituents in wheat kernels, including starch, mineral, phytate, and total protein, were not different among the commercial whole wheat flours and pasta products. WGA is a unique biomarker that can identify wheat products with the highest whole grain content. PRACTICAL ABSTRACT: Whole grain wheat has a high nutrient density that can be part of a healthy diet, but products labeled as whole wheat can still contain some refined grain. Wheat germ agglutinin (WGA) was tested as a biomarker to measure whole grain status in wheat-based foods and revealed that some commercial whole wheat flour and pasta contained unexpectedly lower levels of the WGA biomarker compared to a whole grain standard. WGA may therefore be a useful way to test for whole grain wheat content.
Assuntos
Farinha/análise , Triticum/química , Aglutininas do Germe de Trigo/análise , Biomarcadores/análise , Minerais/análise , Amido/análise , Grãos Integrais/químicaRESUMO
Pelizaeus-Merzbacher disease (PMD) is an X-linked leukodystrophy caused by mutations in Proteolipid Protein 1 (PLP1), encoding a major myelin protein, resulting in profound developmental delay and early lethality. Previous work showed involvement of unfolded protein response (UPR) and endoplasmic reticulum (ER) stress pathways, but poor PLP1 genotype-phenotype associations suggest additional pathogenetic mechanisms. Using induced pluripotent stem cell (iPSC) and gene-correction, we show that patient-derived oligodendrocytes can develop to the pre-myelinating stage, but subsequently undergo cell death. Mutant oligodendrocytes demonstrated key hallmarks of ferroptosis including lipid peroxidation, abnormal iron metabolism, and hypersensitivity to free iron. Iron chelation rescued mutant oligodendrocyte apoptosis, survival, and differentiationin vitro, and post-transplantation in vivo. Finally, systemic treatment of Plp1 mutant Jimpy mice with deferiprone, a small molecule iron chelator, reduced oligodendrocyte apoptosis and enabled myelin formation. Thus, oligodendrocyte iron-induced cell death and myelination is rescued by iron chelation in PMD pre-clinical models.
Assuntos
Deferiprona/uso terapêutico , Células-Tronco Pluripotentes Induzidas/fisiologia , Quelantes de Ferro/uso terapêutico , Ferro/metabolismo , Proteína Proteolipídica de Mielina/metabolismo , Oligodendroglia/fisiologia , Doença de Pelizaeus-Merzbacher/terapia , Animais , Diferenciação Celular , Células Cultivadas , Ferroptose , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/transplante , Peroxidação de Lipídeos , Camundongos , Camundongos Mutantes , Mutação/genética , Proteína Proteolipídica de Mielina/genética , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/transplante , Doença de Pelizaeus-Merzbacher/genética , Doença de Pelizaeus-Merzbacher/patologia , Transplante de Células-Tronco , Reparo Gênico Alvo-DirigidoRESUMO
BACKGROUND: Since 2011 Cameroon has mandated the fortification of refined vegetable oil with vitamin A and wheat flour with iron, zinc, folic acid, and vitamin B-12. In 2012, measured fortification levels for flour, and particularly oil, were below target. OBJECTIVES: We assessed Cameroon's food fortification program using a program impact pathway (PIP) to identify barriers to optimal performance. METHODS: We developed a PIP through literature review and key informant interviews. We conducted interviews at domestic factories for refined vegetable oil (n = 9) and wheat flour (n = 10). In 12 sentinel sites distributed nationally, we assessed availability and storage conditions of fortified foods in markets and frequency of consumption of fortified foods among women and children (n = 613 households). Food samples were collected from factories, markets, and households for measurement of micronutrient content. RESULTS: Two-thirds of factories presented quality certificates for recent premix purchases. All factories had in-house capacity for micronutrient analysis, but most used qualitative methods. Industries cited premix import taxes and access to external laboratories as constraints. Mean vitamin A levels were 141% (95% CI: 116%, 167%), 75% (95% CI: 62%, 89%), and 75% (95% CI: 60%, 90%) of target in individual samples from factories, markets, and households, respectively. Most industry flour samples appeared to be fortified, but micronutrient levels were low. Among composite flour samples from markets and households, the mean iron and zinc content was 25 mg/kg and 43 mg/kg, respectively, â¼45% of target levels; folic acid (36%) and vitamin B-12 (29%) levels were also low. In the previous week, the majority of respondents had consumed "fortifiable" oil (63% women and 52% children) and wheat flour (82% women and 86% children). CONCLUSIONS: In Cameroon, oil fortification program performance appears to have improved since 2012, but fortification levels remain below target, particularly for wheat flour. Consistent regulatory monitoring and program support, possibly through premix procurement and micronutrient analysis, are needed.
RESUMO
Elevated uric acid (UA) is a key risk factor for many disorders, including metabolic syndrome, gout and kidney stones. Despite frequent occurrence of these disorders, the genetic pathways influencing UA metabolism and the association with disease remain poorly understood. In humans, elevated UA levels resulted from the loss of the of the urate oxidase (Uro) gene around 15 million years ago. Therefore, we established a Drosophila melanogaster model with reduced expression of the orthologous Uro gene to study the pathogenesis arising from elevated UA. Reduced Uro expression in Drosophila resulted in elevated UA levels, accumulation of concretions in the excretory system, and shortening of lifespan when reared on diets containing high levels of yeast extract. Furthermore, high levels of dietary purines, but not protein or sugar, were sufficient to produce the same effects of shortened lifespan and concretion formation in the Drosophila model. The insulin-like signaling (ILS) pathway has been shown to respond to changes in nutrient status in several species. We observed that genetic suppression of ILS genes reduced both UA levels and concretion load in flies fed high levels of yeast extract. Further support for the role of the ILS pathway in modulating UA metabolism stems from a human candidate gene study identifying SNPs in the ILS genes AKT2 and FOXO3 being associated with serum UA levels or gout. Additionally, inhibition of the NADPH oxidase (NOX) gene rescued the reduced lifespan and concretion phenotypes in Uro knockdown flies. Thus, components of the ILS pathway and the downstream protein NOX represent potential therapeutic targets for treating UA associated pathologies, including gout and kidney stones, as well as extending human healthspan.
Assuntos
Gota/etiologia , Cálculos Renais/etiologia , Redes e Vias Metabólicas/genética , Transdução de Sinais/genética , Ácido Úrico/metabolismo , Animais , Animais Geneticamente Modificados , Estudos de Coortes , Modelos Animais de Doenças , Drosophila melanogaster , Comportamento Alimentar , Feminino , Técnicas de Silenciamento de Genes , Gota/metabolismo , Humanos , Insulina/metabolismo , Cálculos Renais/metabolismo , Longevidade/genética , Masculino , Pessoa de Meia-Idade , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Polimorfismo de Nucleotídeo Único , Purinas/administração & dosagem , Purinas/efeitos adversos , Urato Oxidase/genética , Urato Oxidase/metabolismoRESUMO
Lysosome function is compromised during aging and in many disease states. Interventions that promote lysosomal activity and acidification are thus of prime interest as treatments for longevity and health. Intracellular pH can be controlled by the exchange of protons for inorganic ions, and in cells from microbes to man, when potassium is restricted in the growth medium, the cytoplasm becomes acidified. Here we use a yeast model to show that potassium limited-cells exhibit hallmarks of increased acidity in the vacuole, the analog of the lysosome, and live long by a mechanism that requires the vacuolar machinery. The emerging picture is one in which potassium restriction shores up vacuolar acidity and function, conferring health benefits early in life and extending viability into old age. Against the backdrop of well-studied protein and carbohydrate restrictions that extend lifespan and healthspan, our work establishes a novel pro-longevity paradigm of inorganic nutrient limitation.
Assuntos
Longevidade , Potássio/fisiologia , Saccharomyces cerevisiae/fisiologia , Vacúolos/metabolismo , Concentração de Íons de HidrogênioRESUMO
This secondary data analysis addressed gaps in knowledge about effects of chronic water intake. Longitudinal data from the Adapt Study were used to describe effects of prescribing a sustained increase in water intake relative to baseline, for 4 weeks, on multiple indices of total body water (TBW) flux, regulation, distribution, and volume in five healthy, free-living, young men, with mean total water intake initially below 2 L/day. Indices were measured weekly. Within-person fixed effect models tested for significant changes in indices over time and associations between changes in indices. Agreement between indices was described. Mixed models tested if baseline between-person differences in hydration indices modified changes in indices over time. Body water flux: The half-life of water in the body decreased significantly. Body water regulation: Serum osmolality decreased significantly. Urine anti-diuretic hormone, sodium, potassium, and osmolality decreased significantly. Plasma aldosterone and serum sodium increased significantly. Body water distribution: No significant changes were observed. Body water volume: Saliva osmolality decreased significantly. Body weight increased significantly by a mean ± SEM of 1.8% ± 0.5% from baseline over 4 weeks. Changes in indices were significantly inter-correlated. Agreement between indices changed over 4 weeks. Baseline saliva osmolality significantly modified responses to chronic water intake. The results motivate hypotheses for future studies: Chronic TBW deficit occurs in healthy individuals under daily life conditions and increases chronic disease risk; Sustained higher water intake restores TBW through gradual isotonic retention of potassium and/or sodium; Saliva osmolality is a sensitive and specific index of chronic hydration status.
Assuntos
Água Corporal/fisiologia , Ingestão de Líquidos/fisiologia , Equilíbrio Hidroeletrolítico , Adulto , Humanos , Masculino , Concentração Osmolar , Saliva/metabolismoRESUMO
Prolonged exposure to the flame retardants found in many household products and building materials is associated with adverse developmental, reproductive, and carcinogenic consequences. While these compounds have been studied in numerous epidemiological and animal models, less is known about the effects of flame retardant exposure on cell function. This study evaluated the toxicity of the commonly used fire retardant tris(1,3-dichloro-2-propyl)phosphate (TDCPP) in cell line derived from the kidney, a major tissue target of organohalogen toxicity. TDCPP inhibited cell growth at lower concentrations (IC50 27 µM), while cell viability and toxicity were affected at higher concentrations (IC50 171 µM and 168 µM, respectively). TDCPP inhibited protein synthesis and caused cell cycle arrest, but only at higher concentrations. Additionally, the antioxidant N-acetylcysteine (NAC) reduced cell toxicity in cells treated with TDCPP, suggesting that exposure to TDCPP increased oxidative stress in the cells. In summary, these data show that low concentrations of TDCPP result in cytostasis in a kidney cell line, whereas higher concentrations induce cell toxicity. Furthermore, TDCPP toxicity can be attenuated by NAC, suggesting that antioxidants may be effective countermeasures to some organohalogen exposures.
RESUMO
Background: Few data are available on the effectiveness of large-scale food fortification programs.Objective: We assessed the impact of mandatory wheat flour fortification on micronutrient status in Yaoundé and Douala, Cameroon.Methods: We conducted representative surveys 2 y before and 1 y after the introduction of fortified wheat flour. In each survey, 10 households were selected within each of the same 30 clusters (n = â¼300 households). Indicators of inflammation, malaria, anemia, and micronutrient status [plasma ferritin, soluble transferrin receptor (sTfR), zinc, folate, and vitamin B-12] were assessed among women aged 15-49 y and children 12-59 mo of age.Results: Wheat flour was consumed in the past 7 d by ≥90% of participants. Postfortification, mean total iron and zinc concentrations of flour samples were 46.2 and 73.6 mg/kg (target added amounts were 60 and 95 mg/kg, respectively). Maternal anemia prevalence was significantly lower postfortification (46.7% compared with 39.1%; adjusted P = 0.01), but mean hemoglobin concentrations and child anemia prevalence did not differ. For both women and children postfortification, mean plasma concentrations were greater for ferritin and lower for sTfR after adjustments for potential confounders. Mean plasma zinc concentrations were greater postfortification and the prevalence of low plasma zinc concentration in women after fortification (21%) was lower than before fortification (39%, P < 0.001); likewise in children, the prevalence postfortification (28%) was lower than prefortification (47%, P < 0.001). Mean plasma total folate concentrations were â¼250% greater postfortification among women (47 compared with 15 nmol/L) and children (56 compared with 20 nmol/L), and the prevalence of low plasma folate values was <1% after fortification in both population subgroups. In a nonrepresentative subset of plasma samples, folic acid was detected in 77% of women (73% of those fasting) and 93% of children. Mean plasma and breast-milk vitamin B-12 concentrations were >50% greater postfortification.Conclusion: Although the pre-post survey design limits causal inference, iron, zinc, folate, and vitamin B-12 status increased among women and children in urban Cameroon after mandatory wheat flour fortification.