Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 321
Filtrar
1.
J Neurooncol ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789843

RESUMO

PURPOSE: High-grade glioma (HGG) is the most common and deadly malignant glioma of the central nervous system. The current standard of care includes surgical resection of the tumor, which can lead to functional and cognitive deficits. The aim of this study is to develop models capable of predicting functional outcomes in HGG patients before surgery, facilitating improved disease management and informed patient care. METHODS: Adult HGG patients (N = 102) from the neurosurgery brain tumor service at Washington University Medical Center were retrospectively recruited. All patients completed structural neuroimaging and resting state functional MRI prior to surgery. Demographics, measures of resting state network connectivity (FC), tumor location, and tumor volume were used to train a random forest classifier to predict functional outcomes based on Karnofsky Performance Status (KPS < 70, KPS ≥ 70). RESULTS: The models achieved a nested cross-validation accuracy of 94.1% and an AUC of 0.97 in classifying KPS. The strongest predictors identified by the model included FC between somatomotor, visual, auditory, and reward networks. Based on location, the relation of the tumor to dorsal attention, cingulo-opercular, and basal ganglia networks were strong predictors of KPS. Age was also a strong predictor. However, tumor volume was only a moderate predictor. CONCLUSION: The current work demonstrates the ability of machine learning to classify postoperative functional outcomes in HGG patients prior to surgery accurately. Our results suggest that both FC and the tumor's location in relation to specific networks can serve as reliable predictors of functional outcomes, leading to personalized therapeutic approaches tailored to individual patients.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38768767

RESUMO

BACKGROUND: This phase 1/2 study evaluates the safety and preliminary efficacy of combining disulfiram and copper (DSF/Cu) with radiation therapy (RT) and temozolomide (TMZ) in patients with newly diagnosed glioblastoma (GBM). METHODS: Patients received standard RT and TMZ with DSF (250-375 mg daily) and Cu, followed by adjuvant TMZ plus DSF (500 mg/day) and Cu. Pharmacokinetic analyses determined drug concentrations in plasma and tumors using high-performance liquid chromatography-mass spectrometry. RESULTS: Thirty-three patients, with a median follow-up of 26.0 months, were treated, including 12 IDH-mutant, 9 NF1-mutant, 3 BRAF-mutant, and 9 other IDH-wildtype cases. In the phase-1 arm, 18 patients were treated; dose-limiting toxicity (DLT) probabilities were 10% (95% CI: 3-29%) at 250 mg/day and 21% (95% CI: 7-42%) at 375 mg/day. The phase 2 arm treated 15 additional patients at 250 mg/day. No significant difference in overall survival or progression-free survival were noted between IDH-mutant and NF1-mutant cohorts compared to institutionally counterparts treated without DSF/Cu. However, extended remission occurred in three BRAF-mutant patients. Diethyl-dithiocarbamate-copper, the proposed active metabolite of DSF/Cu, was detected in plasma but not in tumors. CONCLUSIONS: The maximum tolerated dose of DSF with RT and TMZ is 375 mg/day. DSF/Cu showed limited clinical efficacy for most patients. However, promising efficacy was observed in BRAF-mutant GBM, warranting further investigation.

4.
Clin Cancer Res ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639919

RESUMO

PURPOSE: Glioblastoma (GBM) patient outcomes remain poor despite multimodality treatment with surgery, radiation, and chemotherapy. There are few immunotherapy options due to the lack of tumor immunogenicity. Several clinical trials have reported promising results with cancer vaccines. To date, studies have used data from a single tumor site to identify targetable antigens, but this approach limits the antigen pool and is antithetical to the heterogeneity of GBM. We have implemented multisector sequencing to increase the pool of neoantigens across the GBM genomic landscape that can be incorporated into personalized peptide vaccines called NeoVax. PATIENTS AND METHODS: Here, we report the findings of four subjects enrolled onto the NeoVax clinical trial (NCT0342209). RESULTS: Immune reactivity to NeoVax neoantigens was assessed in peripheral blood mononuclear cells (PBMCs) pre- and post-NeoVax for subjects 1-3 using IFNg-ELISPOT assay. A statistically significant increase in IFNg producing T cells at the post-NeoVax time point for several neoantigens was observed. Furthermore, a post-NeoVax tumor biopsy was obtained from subject 3 and, upon evaluation, revealed evidence of infiltrating, clonally expanded T cells. CONCLUSIONS: Collectively, our findings suggest NeoVax did stimulate expansion of neoantigen-specific effector T cells and provide encouraging results to aid in the development of future neoantigen vaccine-based clinical trials in patients with GBM. Herein, we demonstrate the feasibility of incorporating multisector sampling in cancer vaccine design and provide information on the clinical applicability of clonality, distribution, and immunogenicity of the neoantigen landscape in GBM patients.

5.
Neuro Oncol ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581292

RESUMO

BACKGROUND: Survival is variable in patients with glioblastoma IDH wild-type (GBM), even after comparable surgical resection of radiographically-detectable disease, highlighting the limitations of radiographic assessment of infiltrative tumor anatomy. The majority of post-surgical progressive events are failures within 2cm of the resection margin, motivating supramaximal resection strategies to improve local control. However, which patients benefit from such radical resections remains unknown. METHODS: We developed a predictive model to identify which IDH wild-type GBM are amenable to radiographic gross total resection (GTR). We then investigated whether GBM survival heterogeneity following GTR is correlated with microscopic tumor burden a by analyzing tumor cell content at the surgical margin with a rapid qPCR-based method for detection of TERT promoter mutation. RESULTS: Our predictive model for achievable GTR, developed on retrospective radiographic and molecular data of GBM patients undergoing resection, had an AUC of 0.83, sensitivity of 62%, and specificity of 90%. Prospective analysis of this model in 44 patients found 89% of patients were correctly predicted to achieve a RV<4.9cc. Of the 44 prospective patients undergoing rapid qPCR TERT promoter mutation analysis at the surgical margin, 7 had undetectable TERT mutation, of which 5 also had a gross total resection (RV<1cc). In these 5 patients at 30 months follow up, 75% showed no progression, compared to 0% in the group with TERT mutations detected at the surgical margin (p=0.02). CONCLUSIONS: These findings identify a subset of patients with GBM that may derive local control benefit from radical resection to undetectable molecular margins.

6.
J Bone Miner Res ; 39(4): 484-497, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38477789

RESUMO

Rebound bone loss following denosumab discontinuation is an important clinical challenge. Current treatment strategies to prevent this fail to suppress the rise and overshoot in osteoclast-mediated bone resorption. In this study, we use a murine model of denosumab treatment and discontinuation to show the temporal changes in osteoclast formation and activity during RANKL inhibition and withdrawal. We show that the cellular processes that drive the formation of osteoclasts and subsequent bone resorption following withdrawal of RANKL inhibition precede the rebound bone loss. Furthermore, a rise in serum TRAP and RANKL levels is detected before markers of bone turnover used in current clinical practice. These mechanistic advances may provide insight into a more defined window of opportunity to intervene with sequential therapy following denosumab discontinuation.


Stopping denosumab, a medication commonly used to improve bone mass by blocking formation of bone resorbing osteoclasts, leads to a rebound loss in the bone which was gained during treatment. Current strategies to prevent this bone loss fail in most cases as they are unable to prevent the rise and overshoot in bone resorption by osteoclasts. Thie stems from an incomplete understanding of how osteoclasts behave during denosumab treatment and after treatment is discontinued. We use a mouse model of this phenomenon to show how osteoclast formation and activity changes throughout this process. We show that increases in the processes that drive the formation of osteoclasts can be detected in the circulation before bone loss occurs. These findings could therefore provide insight into a targeted 'window of opportunity' to intervene and prevent the rebound bone loss following stopping denosumab in patients.


Assuntos
Reabsorção Óssea , Denosumab , Osteoclastos , Ligante RANK , Animais , Osteoclastos/metabolismo , Osteoclastos/efeitos dos fármacos , Ligante RANK/antagonistas & inibidores , Ligante RANK/metabolismo , Denosumab/farmacologia , Camundongos , Reabsorção Óssea/patologia , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/sangue , Fatores de Tempo , Fosfatase Ácida Resistente a Tartarato/metabolismo , Feminino , Camundongos Endogâmicos C57BL , Biomarcadores/metabolismo , Biomarcadores/sangue
7.
J Neurosurg ; : 1-11, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457795

RESUMO

OBJECTIVE: Meningiomas are the most common primary brain tumors in adults and a subset are aggressive lesions resistant to standard therapies. Laser interstitial thermal therapy (LITT) has been successfully applied to other brain tumors, and recent work aims to explore the safety and long-term outcome experiences of LITT for both new and recurrent meningiomas. The authors' objective was to report safety and outcomes data of the largest cohort of LITT-treated meningioma patients to date. METHODS: Eight United States-based hospitals enrolled patients with meningioma in the Laser Ablation of Abnormal Neurological Tissue Using Robotic NeuroBlate System (LAANTERN) prospective multicenter registry and/or contributed additional retrospective enrollments for this cohort study. Demographic, procedural, safety, and outcomes data were collected and analyzed using standard statistical methods. RESULTS: Twenty adult patients (12 prospective and 8 retrospective) with LITT-targeted meningiomas were accrued. Patients underwent LITT for new (6 patients) and recurrent (14 patients) tumors (ranging from the 1st to 12th recurrence). The 30-day complication rate was 10%. Twenty percent of patients (4/20) had exhausted all other treatment options. Median length of follow-up was 1.3 years. One-third of new (2/6) and one-half of recurrent (7/14) meningiomas had disease progression during follow-up. One-year estimated local control (LC), progression-free survival, and overall survival rates were 55.3%, 48.4%, and 86.3%, respectively. In the 12 patients who had ≥ 91% ablative coverage, 1-year estimated LC was 61.4%. The complication rate was 10% (2/20), with 1 complication being transient and resolving postoperatively. CONCLUSIONS: This cohort study supports the safety of the procedure for this tumor type. LITT can offer a much-needed treatment option, especially for patients with multiply recurrent meningiomas who have limited remaining alternatives.

8.
Cureus ; 16(2): e54092, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38496089

RESUMO

Background There are a relatively limited number of emergency medicine (EM) medical education (MedEd) fellowships with few trainees at each program, creating barriers to local collaboration and networking. While best practices for developing MedEd journal clubs exist, there has not been an established national EM MedEd journal club. To address this need, we created a national journal club, the Council of Residency Directors (CORD) MedEd Journal Club (MEJC), to facilitate collaboration and networking opportunities by providing a synchronous online journal club. Objectives Our primary objective was to create a network for collaboration across geographical barriers to form a virtual community of practice (CoP) around the shared domain of evidence-based MedEd. Our secondary objective was to improve MedEd fellows' knowledge, skills, and attitudes surrounding MedEd research. Tertiary objectives included (1) broadening fellow exposure to key topics within MedEd, (2) describing how to develop scholarly work within MedEd, and (3) filling a perceived need for building a national MedEd virtual CoP. Curricular design The concept and objectives of the CORD MEJC were introduced to fellows and fellowship directors through a national listserv in March of 2022. Fellows volunteered to lead virtual sessions via Zoom on a monthly basis. Session fellow leaders independently chose the topics and were asked to submit two to three journal club articles discussing the topic at least two weeks in advance of each session. No topics were repeated throughout the academic year.  Impact/effectiveness Our quality improvement survey results indicated that the CORD MEJC is meeting its primary and secondary objectives. Survey results will be utilized as part of a continuous quality improvement initiative to enhance our program structure and curricula for the 2023-2024 academic year.

9.
Neurosurgery ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441527

RESUMO

BACKGROUND AND OBJECTIVES: To address the lack of a multicenter pituitary surgery research consortium in the United States, we established the Registry of Adenomas of the Pituitary and Related Disorders (RAPID). The goals of RAPID are to examine surgical outcomes, improve patient care, disseminate best practices, and facilitate multicenter surgery research at scale. Our initial focus is Cushing disease (CD). This study aims to describe the current RAPID patient cohort, explore surgical outcomes, and lay the foundation for future studies addressing the limitations of previous studies. METHODS: Prospectively and retrospectively obtained data from participating sites were aggregated using a cloud-based registry and analyzed retrospectively. Standard preoperative variables and outcome measures included length of stay, unplanned readmission, and remission. RESULTS: By July 2023, 528 patients with CD had been treated by 26 neurosurgeons with varying levels of experience at 9 academic pituitary centers. No surgeon treated more than 81 of 528 (15.3%) patients. The mean ± SD patient age was 43.8 ± 13.9 years, and most patients were female (82.2%, 433/527). The mean tumor diameter was 0.8 ± 2.7 cm. Most patients (76.6%, 354/462) had no prior treatment. The most common pathology was corticotroph tumor (76.8%, 381/496). The mean length of stay was 3.8 ± 2.5 days. The most common discharge destination was home (97.2%, 513/528). Two patients (0.4%, 2/528) died perioperatively. A total of 57 patients (11.0%, 57/519) required an unplanned hospital readmission within 90 days of surgery. The median actuarial disease-free survival after index surgery was 8.5 years. CONCLUSION: This study examined an evolving multicenter collaboration on patient outcomes after surgery for CD. Our results provide novel insights on surgical outcomes not possible in prior single-center studies or with national administrative data sets. This collaboration will power future studies to better advance the standard of care for patients with CD.

10.
Proc Natl Acad Sci U S A ; 121(8): e2306973121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38346200

RESUMO

Integrating multimodal neuro- and nanotechnology-enabled precision immunotherapies with extant systemic immunotherapies may finally provide a significant breakthrough for combatting glioblastoma (GBM). The potency of this approach lies in its ability to train the immune system to efficiently identify and eradicate cancer cells, thereby creating anti-tumor immune memory while minimizing multi-mechanistic immune suppression. A critical aspect of these therapies is the controlled, spatiotemporal delivery of structurally defined nanotherapeutics into the GBM tumor microenvironment (TME). Architectures such as spherical nucleic acids or poly(beta-amino ester)/dendrimer-based nanoparticles have shown promising results in preclinical models due to their multivalency and abilities to activate antigen-presenting cells and prime antigen-specific T cells. These nanostructures also permit systematic variation to optimize their distribution, TME accumulation, cellular uptake, and overall immunostimulatory effects. Delving deeper into the relationships between nanotherapeutic structures and their performance will accelerate nano-drug development and pave the way for the rapid clinical translation of advanced nanomedicines. In addition, the efficacy of nanotechnology-based immunotherapies may be enhanced when integrated with emerging precision surgical techniques, such as laser interstitial thermal therapy, and when combined with systemic immunotherapies, particularly inhibitors of immune-mediated checkpoints and immunosuppressive adenosine signaling. In this perspective, we highlight the potential of emerging treatment modalities, combining advances in biomedical engineering and neurotechnology development with existing immunotherapies to overcome treatment resistance and transform the management of GBM. We conclude with a call to action for researchers to leverage these technologies and accelerate their translation into the clinic.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Nanoestruturas , Humanos , Glioblastoma/patologia , Imunoterapia/métodos , Nanopartículas/uso terapêutico , Nanopartículas/química , Nanotecnologia , Nanoestruturas/química , Microambiente Tumoral , Neoplasias Encefálicas/patologia
11.
Cancer Discov ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38416133

RESUMO

Recent clinical trials have highlighted the limited efficacy of T cell-based immunotherapy in patients with glioblastoma (GBM). To better understand the characteristics of tumor-infiltrating lymphocytes (TIL) in GBM, we performed cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) and single-cell RNA sequencing (scRNA-seq) with paired V(D)J sequencing, respectively, on TIL from two cohorts of patients totaling 15 patients with high grade glioma, including GBM or astrocytoma, IDH mutant, grade 4 (G4A). Analysis of the CD8+ TIL landscape reveals an enrichment of clonally expanded GZMK+ effector T cells in the tumor compared to matched blood, which was validated at the protein level. Furthermore, integration with other cancer types highlights the lack of a canonically exhausted CD8+ T cell population in GBM TIL. These data suggest that GZMK+ effector T cells represent an important T cell subset within the GBM microenvironment and which may harbor potential therapeutic implications.

12.
Nat Commun ; 15(1): 478, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216553

RESUMO

Vestibular schwannomas (VS) are benign tumors that lead to significant neurologic and otologic morbidity. How VS heterogeneity and the tumor microenvironment (TME) contribute to VS pathogenesis remains poorly understood. In this study, we perform scRNA-seq on 15 VS, with paired scATAC-seq (n = 6) and exome sequencing (n = 12). We identify diverse Schwann cell (SC), stromal, and immune populations in the VS TME and find that repair-like and MHC-II antigen-presenting SCs are associated with myeloid cell infiltrate, implicating a nerve injury-like process. Deconvolution analysis of RNA-expression data from 175 tumors reveals Injury-like tumors are associated with larger tumor size, and scATAC-seq identifies transcription factors associated with nerve repair SCs from Injury-like tumors. Ligand-receptor analysis and in vitro experiments suggest that Injury-like VS-SCs recruit myeloid cells via CSF1 signaling. Our study indicates that Injury-like SCs may cause tumor growth via myeloid cell recruitment and identifies molecular pathways that may be therapeutically targeted.


Assuntos
Neuroma Acústico , Humanos , Neuroma Acústico/genética , Neuroma Acústico/metabolismo , Neuroma Acústico/patologia , Ecossistema , Multiômica , Células de Schwann/metabolismo , Transdução de Sinais/fisiologia , Análise de Célula Única , Microambiente Tumoral
13.
Radiol Artif Intell ; 6(1): e220231, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38197800

RESUMO

Purpose To present results from a literature survey on practices in deep learning segmentation algorithm evaluation and perform a study on expert quality perception of brain tumor segmentation. Materials and Methods A total of 180 articles reporting on brain tumor segmentation algorithms were surveyed for the reported quality evaluation. Additionally, ratings of segmentation quality on a four-point scale were collected from medical professionals for 60 brain tumor segmentation cases. Results Of the surveyed articles, Dice score, sensitivity, and Hausdorff distance were the most popular metrics to report segmentation performance. Notably, only 2.8% of the articles included clinical experts' evaluation of segmentation quality. The experimental results revealed a low interrater agreement (Krippendorff α, 0.34) in experts' segmentation quality perception. Furthermore, the correlations between the ratings and commonly used quantitative quality metrics were low (Kendall tau between Dice score and mean rating, 0.23; Kendall tau between Hausdorff distance and mean rating, 0.51), with large variability among the experts. Conclusion The results demonstrate that quality ratings are prone to variability due to the ambiguity of tumor boundaries and individual perceptual differences, and existing metrics do not capture the clinical perception of segmentation quality. Keywords: Brain Tumor Segmentation, Deep Learning Algorithms, Glioblastoma, Cancer, Machine Learning Clinical trial registration nos. NCT00756106 and NCT00662506 Supplemental material is available for this article. © RSNA, 2023.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Glioblastoma , Humanos , Algoritmos , Benchmarking , Neoplasias Encefálicas/diagnóstico por imagem , Glioblastoma/diagnóstico por imagem
14.
Neuro Oncol ; 26(4): 749-763, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38087980

RESUMO

BACKGROUND: Prior literature suggests that individual socioeconomic status (SES) may influence incidence, treatments, and survival of brain tumor cases. We aim to conduct the first national study to evaluate the association between US county-level SES and incidence, treatment, and survival in meningioma. METHODS: The Central Brain Tumor Registry of the United States analytic dataset, which combines data from CDC's National Program of Cancer Registries (NPCR) and National Cancer Institute's Surveillance, Epidemiology, and End Results Program, was used to identify meningioma cases from 2006 to 2019. SES quintiles were created using American Community Survey data. Logistic regression models were used to evaluate associations between SES and meningioma. Cox proportional hazard models were constructed to assess the effect of SES on survival using the NPCR analytic dataset. RESULTS: A total of 409 681 meningioma cases were identified. Meningioma incidence increased with higher county-level SES with Q5 (highest quintile) having a 12% higher incidence than Q1 (incidence rate ratios (IRR) = 1.12, 95%CI: 1.10-1.14; P < .0001). The Hispanic group was the only racial-ethnic group that had lower SES associated with increased meningioma incidence (Q5: age-adjusted incidence ratio (AAIR) = 9.02, 95%CI: 8.87-9.17 vs. Q1: AAIR = 9.33, 95%CI: 9.08-9.59; IRR = 0.97, 95%CI: 0.94-1.00; P = .0409). Increased likelihood of surgical treatment was associated with Asian or Pacific Islander non-Hispanic individuals (compared to White non-Hispanic (WNH)) (OR = 1.28, 95%CI: 1.23-1.33, P < .001) and males (OR = 1.31, 95%CI: 1.29-1.33, P < .001). Black non-Hispanic individuals (OR = 0.90, 95%CI: 0.88-0.92, P < .001) and those residing in metropolitan areas (OR = 0.96, 95%CI: 0.96-0.96, P < .001) were less likely to receive surgical treatment compared to WNH individuals. Overall median survival was 137 months, and survival was higher in higher SES counties (Q5 median survival = 142 months). CONCLUSIONS: Higher county-level SES was associated with increased meningioma incidence, surgical treatment, and overall survival. Racial-ethnic stratification identified potential disparities within the meningioma population. Further work is needed to understand the underpinnings of socioeconomic and racial disparities for meningioma patients.


Assuntos
Neoplasias Encefálicas , Neoplasias Meníngeas , Meningioma , Masculino , Humanos , Estados Unidos/epidemiologia , Incidência , Meningioma/epidemiologia , Classe Social , Neoplasias Meníngeas/epidemiologia
15.
Urology ; 183: e325-e327, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37951362

RESUMO

BACKGROUND: Population-based practice patterns in the United States reveal continent diversions are only performed in 8%-10.4% of patients.1-4 Ideally, for patients undergoing radical cystectomy the choice of urinary diversion should be influenced by clinical factors and patient preference, with discussions surrounding quality of life. Unfortunately, receipt of continent diversion has been shown to be influenced by a plethora of other factors such as surgeon preference/training, geography, socioeconomic status, gender, and hospital volume.1-3 Thus, by providing detailed instruction and long-term follow-up, we hope to mitigate some of these disparities by changing the perceptions regarding feasibility and complications of continent diversions. OBJECTIVE: To provide step-by-step instruction and to report long-term clinical outcomes in bladder cancer patients receiving an Indiana pouch continent cutaneous urinary diversion (CCUD) after robot-assisted radical cystectomy. DESIGN, SETTING, AND PARTICIPANTS: After Institutional Review Board approval, a prospectively maintained bladder cancer database was queried for patients with T1-T4, N0-N1, M0 bladder cancer undergoing radical cystectomy with CCUD at a tertiary referral center from 2004 to 2020. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Complications at 30- and 90-day were recorded according to the Clavien-Dindo classification. Continence rates were recorded by chart review. RESULTS AND LIMITATIONS: A total of 97 patients were included with a median follow-up of 93months. Clinically, 91.8% had ≤T2 disease and 29.9% received neoadjuvant chemotherapy. The median length of surgery was 8.0 hours, length of hospital stay was 8.3days, and urinary continence rate was 99.0%. The overall complication rate was 73.2% and 76.5% at 30- and 90-day, respectively. The major complication rate (Clavien III-V) was 17.5% at 30-day and 22.7% at 90-day. The most common major complications were abdominal infection and uretero-colonic stricture. The readmission rate was 21.4% and median overall survival was 108months. CONCLUSION: CCUD provides exceptional functional outcomes with acceptable complication rates compared to other diversion types. CCUD is a reliable reconstructive option and with this step-by-step video as a reference, we hope it will be offered to more patients.


Assuntos
Procedimentos Cirúrgicos Robóticos , Neoplasias da Bexiga Urinária , Derivação Urinária , Humanos , Cistectomia/métodos , Procedimentos Cirúrgicos Robóticos/métodos , Qualidade de Vida , Derivação Urinária/métodos , Neoplasias da Bexiga Urinária/cirurgia , Neoplasias da Bexiga Urinária/complicações , Resultado do Tratamento , Complicações Pós-Operatórias/etiologia
16.
Acad Radiol ; 31(4): 1572-1582, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37951777

RESUMO

RATIONALE AND OBJECTIVES: Brain tumor segmentations are integral to the clinical management of patients with glioblastoma, the deadliest primary brain tumor in adults. The manual delineation of tumors is time-consuming and highly provider-dependent. These two problems must be addressed by introducing automated, deep-learning-based segmentation tools. This study aimed to identify criteria experts use to evaluate the quality of automatically generated segmentations and their thought processes as they correct them. MATERIALS AND METHODS: Multiple methods were used to develop a detailed understanding of the complex factors that shape experts' perception of segmentation quality and their thought processes in correcting proposed segmentations. Data from a questionnaire and semistructured interview with neuro-oncologists and neuroradiologists were collected between August and December 2021 and analyzed using a combined deductive and inductive approach. RESULTS: Brain tumors are highly complex and ambiguous segmentation targets. Therefore, physicians rely heavily on the given context related to the patient and clinical context in evaluating the quality and need to correct brain tumor segmentation. Most importantly, the intended clinical application determines the segmentation quality criteria and editing decisions. Physicians' personal beliefs and preferences about the capabilities of AI algorithms and whether questionable areas should not be included are additional criteria influencing the perception of segmentation quality and appearance of an edited segmentation. CONCLUSION: Our findings on experts' perceptions of segmentation quality will allow the design of improved frameworks for expert-centered evaluation of brain tumor segmentation models. In particular, the knowledge presented here can inspire the development of brain tumor-specific metrics for segmentation model training and evaluation.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Algoritmos , Glioblastoma/patologia , Reconhecimento Automatizado de Padrão/métodos , Carga Tumoral , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos
17.
bioRxiv ; 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-37961719

RESUMO

Precise control of protein ubiquitination is essential for brain development, and hence, disruption of ubiquitin signaling networks can lead to neurological disorders. Mutations of the deubiquitinase USP7 cause the Hao-Fountain syndrome (HAFOUS), characterized by developmental delay, intellectual disability, autism, and aggressive behavior. Here, we report that conditional deletion of USP7 in excitatory neurons in the mouse forebrain triggers diverse phenotypes including sensorimotor deficits, learning and memory impairment, and aggressive behavior, resembling clinical features of HAFOUS. USP7 deletion induces neuronal apoptosis in a manner dependent of the tumor suppressor p53. However, most behavioral abnormalities in USP7 conditional mice persist despite p53 loss. Strikingly, USP7 deletion in the brain perturbs the synaptic proteome and dendritic spine morphogenesis independently of p53. Integrated proteomics analysis reveals that the neuronal USP7 interactome is enriched for proteins implicated in neurodevelopmental disorders and specifically identifies the RNA splicing factor Ppil4 as a novel neuronal substrate of USP7. Knockdown of Ppil4 in cortical neurons impairs dendritic spine morphogenesis, phenocopying the effect of USP7 loss on dendritic spines. These findings reveal a novel USP7-Ppil4 ubiquitin signaling link that regulates neuronal connectivity in the developing brain, with implications for our understanding of the pathogenesis of HAFOUS and other neurodevelopmental disorders.

18.
Neuro Oncol ; 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38070147

RESUMO

BACKGROUND: We recently conducted a phase 2 trial (NCT028865685) evaluating intracranial efficacy of pembrolizumab for brain metastases (BM) of diverse histologies. Our study met its primary efficacy endpoint and illustrates that pembrolizumab exerts promising activity in a select group of patients with BM. Given the importance of aberrant vasculature in mediating immunosuppression, we explored the relationship between checkpoint inhibitor (ICI) efficacy and vascular architecture in the hopes of identifying potential mechanisms of intracranial ICI response or resistance for BM. METHODS: Using Vessel Architectural Imaging (VAI), a histologically validated quantitative metric for in vivo tumor vascular physiology, we analyzed dual echo DSC/DCE MRI for 44 patients on trial. Tumor and peri-tumor cerebral blood volume/flow, vessel size, arterial- and venous-dominance, and vascular permeability were measured before and after treatment with pembrolizumab. RESULTS: BM that progressed on ICI were characterized by a highly aberrant vasculature dominated by large-caliber vessels. In contrast, ICI-responsive BM possessed a more structurally balanced vasculature consisting of both small and large vessels, and there was a trend towards a decrease in under-perfused tissue, suggesting a reversal of the negative effects of hypoxia. In the peri-tumor region, development of smaller blood vessels, consistent with neo-angiogenesis, was associated with tumor growth before radiographic evidence of contrast enhancement on anatomical MRI. CONCLUSIONS: This study, one of the largest functional imaging studies for BM, suggests that vascular architecture is linked with ICI efficacy. Studies identifying modulators of vascular architecture, and effects on immune activity, are warranted and may inform future combination treatments.

19.
Nature ; 623(7986): 432-441, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37914932

RESUMO

Chromatin accessibility is essential in regulating gene expression and cellular identity, and alterations in accessibility have been implicated in driving cancer initiation, progression and metastasis1-4. Although the genetic contributions to oncogenic transitions have been investigated, epigenetic drivers remain less understood. Here we constructed a pan-cancer epigenetic and transcriptomic atlas using single-nucleus chromatin accessibility data (using single-nucleus assay for transposase-accessible chromatin) from 225 samples and matched single-cell or single-nucleus RNA-sequencing expression data from 206 samples. With over 1 million cells from each platform analysed through the enrichment of accessible chromatin regions, transcription factor motifs and regulons, we identified epigenetic drivers associated with cancer transitions. Some epigenetic drivers appeared in multiple cancers (for example, regulatory regions of ABCC1 and VEGFA; GATA6 and FOX-family motifs), whereas others were cancer specific (for example, regulatory regions of FGF19, ASAP2 and EN1, and the PBX3 motif). Among epigenetically altered pathways, TP53, hypoxia and TNF signalling were linked to cancer initiation, whereas oestrogen response, epithelial-mesenchymal transition and apical junction were tied to metastatic transition. Furthermore, we revealed a marked correlation between enhancer accessibility and gene expression and uncovered cooperation between epigenetic and genetic drivers. This atlas provides a foundation for further investigation of epigenetic dynamics in cancer transitions.


Assuntos
Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias , Humanos , Hipóxia Celular , Núcleo Celular , Cromatina/genética , Cromatina/metabolismo , Elementos Facilitadores Genéticos/genética , Epigênese Genética/genética , Transição Epitelial-Mesenquimal , Estrogênios/metabolismo , Perfilação da Expressão Gênica , Proteínas Ativadoras de GTPase/metabolismo , Metástase Neoplásica , Neoplasias/classificação , Neoplasias/genética , Neoplasias/patologia , Sequências Reguladoras de Ácido Nucleico/genética , Análise de Célula Única , Fatores de Transcrição/metabolismo
20.
ACS Appl Mater Interfaces ; 15(43): 50047-50057, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37856877

RESUMO

Immunomodulation therapies have attracted immense interest recently for the treatment of immune-related diseases, such as cancer and viral infections. This new wave of enthusiasm for immunomodulators, predominantly revolving around cytokines, has spurred emerging needs and opportunities for novel immune monitoring and diagnostic tools. Considering the highly dynamic immune status and limited window for therapeutic intervention, precise real-time detection of cytokines is critical to effectively monitor and manage the immune system and optimize the therapeutic outcome. The clinical success of such a rapid, sensitive, multiplex immunoanalytical platform further requires the system to have ease of integration and fabrication for sample sparing and large-scale production toward massive parallel analysis. In this article, we developed a nanoplasmonic bioink-based, label-free, multiplex immunosensor that can be readily "written" onto a glass substrate via one-step calligraphy patterning. This facile nanolithography technique allows programmable patterning of a minimum of 3 µL of nanoplasmonic bioink in 1 min and thus enables fabrication of a nanoplasmonic microarray immunosensor with 2 h simple incubation. The developed immunosensor was successfully applied for real-time, parallel detection of multiple cytokines (e.g., interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and transforming growth factor-beta (TGF-ß)) in immunomodulated macrophage samples. This integrated platform synergistically incorporates the concepts of nanosynthesis, nanofabrication, and nanobiosensing, showing great potential in the scalable production of label-free multiplex immunosensing devices with superior analytical performance for clinical applications in immunodiagnostics and immunotherapy.


Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Ressonância de Plasmônio de Superfície/métodos , Monitorização Imunológica , Imunoensaio/métodos , Citocinas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA