Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
ACS Nano ; 18(23): 15154-15166, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38808726

RESUMO

Platinum ditelluride (1T-PtTe2) is a two-dimensional (2D) topological semimetal with a distinctive band structure and flexibility of van der Waals integration as a promising candidate for future electronics and spintronics. Although the synthesis of large-scale, uniform, and highly crystalline films of 2D semimetals system is a prerequisite for device application, the synthetic methods meeting these criteria are still lacking. Here, we introduce an approach to synthesize highly oriented 2D topological semimetal PtTe2 using a thermally assisted conversion called tellurization, which is a cost-efficient method compared to the other epitaxial deposition methods. We demonstrate that achieving highly crystalline 1T-PtTe2 using tellurization is not dependent on epitaxy but rather relies on two critical factors: (i) the crystallinity of the predeposited platinum (Pt) film and (ii) the surface coverage ratio of the Pt film considering lateral lattice expansion during transformation. By optimizing the surface coverage ratio of the epitaxial Pt film, we successfully obtained 2 in. wafer-scale uniformity without in-plane misalignment between antiparallelly oriented domains. The electronic band structure of 2D topological PtTe2 is clearly resolved in momentum space, and we observed an interesting 6-fold gapped Dirac cone at the Fermi surface. Furthermore, ultrahigh electrical conductivity down to ∼3.8 nm, which is consistent with that of single crystal PtTe2, was observed, proving its ultralow defect density.

2.
ACS Nano ; 15(11): 18113-18124, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34734700

RESUMO

Charge doping to Mott insulators is critical to realize high-temperature superconductivity, quantum spin liquid state, and Majorana fermion, which would contribute to quantum computation. Mott insulators also have a great potential for optoelectronic applications; however, they showed insufficient photoresponse in previous reports. To enhance the photoresponse of Mott insulators, charge doping is a promising strategy since it leads to effective modification of electronic structure near the Fermi level. Intercalation, which is the ion insertion into the van der Waals gap of layered materials, is an effective charge-doping method without defect generation. Herein, we showed significant enhancement of optoelectronic properties of a layered Mott insulator, α-RuCl3, through electron doping by organic cation intercalation. The electron-doping results in substantial electronic structure change, leading to the bandgap shrinkage from 1.2 eV to 0.7 eV. Due to localized excessive electrons in RuCl3, distinct density of states is generated in the valence band, leading to the optical absorption change rather than metallic transition even in substantial doping concentration. The stable near-infrared photodetector using electronic modulated RuCl3 showed 50 times higher photoresponsivity and 3 times faster response time compared to those of pristine RuCl3, which contributes to overcoming the disadvantage of a Mott insulator as a promising optoelectronic device and expanding the material libraries.

3.
ACS Nano ; 14(10): 13727-13738, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-32930570

RESUMO

Synthetic nanofluidic diodes with highly nonlinear current-voltage characteristics are currently of particular interest because of their potential applications in biosensing, separation, energy harvesting, and nanofluidic electronics. We report the ionic current rectification (ICR) characteristics of a porous anodic aluminum oxide membrane, whose one end of the nanochannels is closed by a barrier oxide layer. The membrane exhibits intriguing pH-dependent ion transport characteristics, which cannot be explained by the conventional surface charge governed ionic transport mechanism. We reveal experimentally and theoretically that the space charge density gradient present across the 40-nm-thick barrier oxide is mainly responsible for the evolution of ICR. Based on our findings, we demonstrate the formation of a single 5-8-nm-sized pore in each hexagonal cell of the barrier oxide. The present work would provide valuable information for the design and fabrication of future ultrathin nanofluidic devices without being limited by the engineering of the nanochannel geometry or surface charge.

4.
ACS Appl Mater Interfaces ; 12(36): 40518-40524, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32808524

RESUMO

Ternary alloys in two-dimensional (2D) transition-metal dichalcogenides allow band gap tuning and phase engineering and change the electrical transport type. A process of 2D van der Waals epitaxial growth of molybdenum sulfide telluride alloys (MoS2xTe2(1-x), 0 ≤ x ≤ 1) is presented for synthesizing few-atomic-layer films on SiO2 substrates using metal-organic chemical vapor deposition. Raman spectra, X-ray photoelectron spectra, photoluminescence (PL), and electrical transport properties of few-atomic-layer MoS2xTe2(1-x) (0 ≤ x ≤ 1) films are systematically investigated. The strong PL peaks at 80 K from MoS2xTe2(1-x) (0.45 ≤ x ≤ 0.93) reveal a composition-controllable optical band gap (Eg = 1.55-1.91 eV at 80 K). Electrical transport properties of MoS2xTe2(1-x) alloys, where 0 ≤ x ≤ 0.8 and 0.93 ≤ x ≤ 1, exhibit p-type and n-type semiconducting behaviors, respectively. Remarkably, an increase in the Te composition of a few-atomic-layer MoS2xTe2(1-x) (0 ≤ x ≤ 1) film left-shifts the threshold voltage of a MoS2xTe2(1-x) (0 ≤ x ≤ 1) field-effect transistor. The narrower band gap energies of MoS2xTe2(1-x) films with higher Te content cause a decrease in the on/off current ratios.

5.
ACS Appl Mater Interfaces ; 11(39): 35693-35701, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31500412

RESUMO

Visible-light-driven photocatalytic CO2 reduction using TiO2 that can absorb light of all wavelengths has been sought for over half a century. Herein, we report a phase-selective disordered anatase/ordered rutile interface system for visible-light-driven, metal-free CO2 reduction using a narrow band structure, whose conduction band position matches well with the reduction potential of CO2 to CH4 and CO. A mixed disordered anatase/ordered rutile (Ad/Ro) TiO2 was prepared from anatase and rutile phase-mixed P25 TiO2 at room temperature and under an ambient atmosphere in sodium alkyl amine solutions. The Ad/Ro TiO2 showed a narrow band structure due to multi-internal energy band gaps of Ti3+ defect sites in the disordered anatase phase, leading to high visible light absorption and simultaneously providing fast charge separation through the crystalline rutile phase, which was faster than that of pristine P25 TiO2. The band gap of Ad/Ro TiO2 is 2.62 eV with a conduction band of -0.27 eV, which matches well with the reduction potential of -0.24 VNHE of CO2/CH4, leading to effective electron transfer to CO2. As a result, the Ad/Ro TiO2 provided the highest CH4 production (3.983 µmol/(g h)), which is higher than that of even metal (W, Ru, Ag, and Pt)-doped P25, for CO2 reduction under visible light.

6.
Sci Rep ; 7(1): 12506, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28970501

RESUMO

The retention of electrical performance under the combined conditions of mechanical strain and an electrical current is essential for flexible electronics. Here, we report that even below the critical current density required for electromigration, the electrical current can significantly deteriorate the electromechanical performance of metal film/polymer substrate systems. This leads to a loss of stretchability, and this effect becomes more severe with increasing strain as well as increasing current. The local increase of electrical resistance in the metal film caused by damage, such as localized deformations, cracks, etc., locally raises the temperature of the test sample via Joule heating. This weakens the deformation resistance of the polymer substrate, accelerating the necking instability, and consequently leading to a rapid loss of electrical conductivity with strain. To minimize such a current-induced deterioration of the polymer-supported metal films, we develop and demonstrate the feasibility of two methods that enhance the deformation resistance of the polymer substrate at elevated temperatures: increasing the thickness of the polymer substrate, and utilizing a polymer substrate with a high glass transition temperature.

7.
Acta Biomater ; 64: 67-79, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28966094

RESUMO

Current in vitro liver models provide three-dimensional (3-D) microenvironments in combination with tissue engineering technology and can perform more accurate in vivo mimicry than two-dimensional models. However, a human cell-based, functionally mature liver model is still desired, which would provide an alternative to animal experiments and resolve low-prediction issues on species differences. Here, we prepared hybrid hydrogels of varying elasticity and compared them with a normal liver, to develop a more mature liver model that preserves liver properties in vitro. We encapsulated HepaRG cells, either alone or with supporting cells, in a biodegradable hybrid hydrogel. The elastic modulus of the 3D liver dynamically changed during culture due to the combined effects of prolonged degradation of hydrogel and extracellular matrix formation provided by the supporting cells. As a result, when the elastic modulus of the 3D liver model converges close to that of the in vivo liver (≅ 2.3 to 5.9 kPa), both phenotypic and functional maturation of the 3D liver were realized, while hepatic gene expression, albumin secretion, cytochrome p450-3A4 activity, and drug metabolism were enhanced. Finally, the 3D liver model was expanded to applications with embryonic stem cell-derived hepatocytes and primary human hepatocytes, and it supported prolonged hepatocyte survival and functionality in long-term culture. Our model represents critical progress in developing a biomimetic liver system to simulate liver tissue remodeling, and provides a versatile platform in drug development and disease modeling, ranging from physiology to pathology. STATEMENT OF SIGNIFICANCE: We provide a functionally improved 3D liver model that recapitulates in vivo liver stiffness. We have experimentally addressed the issues of orchestrated effects of mechanical compliance, controlled matrix formation by stromal cells in conjunction with hepatic differentiation, and functional maturation of hepatocytes in a dynamic 3D microenvironment. Our model represents critical progress in developing a biomimetic liver system to simulate liver tissue remodeling, and provides a versatile platform in drug development and disease modeling, ranging from physiology to pathology. Additionally, recent advances in the stem-cell technologies have made the development of 3D organoid possible, and thus, our study also provides further contribution to the development of physiologically relevant stem-cell-based 3D tissues that provide an elasticity-based predefined biomimetic 3D microenvironment.


Assuntos
Plásticos Biodegradáveis/química , Células Imobilizadas/metabolismo , Microambiente Celular , Hepatócitos/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Hidrogéis/química , Fígado Artificial , Modelos Biológicos , Antígenos de Diferenciação/biossíntese , Células Imobilizadas/citologia , Elasticidade , Hepatócitos/citologia , Células-Tronco Embrionárias Humanas/citologia , Humanos
8.
Nanotechnology ; 28(3): 035402, 2017 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-27934781

RESUMO

We investigated the ultraviolet (UV) responses of a heterojunction Si quantum dot (QD) solar cell consisting of p-type Si-QDs fabricated on a n-type crystalline Si (p-Si-QD/n-c-Si HJSC). The UV responses were compared with a conventional n-type crystalline Si solar cell (n-c-Si SC). The external and internal quantum efficiency results of the p-Si-QD/n-c-Si HJSC exhibited a clear enhancement in the UV responses (300-400 nm), which was not observed in the n-c-Si SC. Based on the results of the cell reflectance and bias-dependent responses, we expect that almost all UV responses occur in the p-Si-QD layer, and the generated carriers can be transported via the Si-QD layer due to the formation of a sufficient electric filed. As a result, a high power conversion efficiency of 14.5% was achieved from the p-Si-QD/n-c-Si HJSC. By reducing the thickness of the n-Si substrate from 650 µm to 300 µm, more enhanced power conversion efficiency of 14.8% was obtained which is the highest value among the reported Si-QD based solar cells to date.

9.
Nanotechnology ; 26(1): 015502, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25490192

RESUMO

Simple, sensitive, and rapid detection of trace levels of extensively used and highly toxic pesticides are in urgent demand for public health. Surface-enhanced Raman scattering (SERS)-based sensor was designed to achieve ultrasensitive and simple pesticide sensing. We developed a portable sensor system composed of high performance and reliable gold nanofinger sensor strips and a custom-built portable Raman spectrometer. Compared to the general procedure and previously reported studies that are limited to laboratory settings, our analytical method is simple, sensitive, rapid, and cost-effective. Based on the SERS results, the chemical interaction of two pesticides, chlorpyrifos (CPF) and thiabendazole (TBZ), with gold nanofingers was studied to determine a fingerprint for each pesticide. The portable SERS-sensor system was successfully demonstrated to detect CPF and TBZ pesticides within 15 min with a detection limit of 35 ppt in drinking water and 7 ppb on apple skin, respectively.


Assuntos
Nanopartículas Metálicas/química , Nanotecnologia/instrumentação , Praguicidas/análise , Análise Espectral Raman/instrumentação , Clorpirifos/análise , Ouro/química , Humanos , Limite de Detecção , Tiabendazol/análise
10.
Nanotechnology ; 25(15): 155302, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24642827

RESUMO

The deterministic assembly of metallic nanoparticles is an exciting field with many potential benefits. Many promising techniques have been developed, but challenges remain, particularly for the assembly of larger nanoparticles which often have more interesting plasmonic properties. Here we present a scalable process combining the strengths of top down and bottom up fabrication to generate deterministic 2D assemblies of metallic nanoparticles and demonstrate their stable transfer to solution. Scanning electron and high-resolution transmission electron microscopy studies of these assemblies suggested the formation of nanobridges between touching nanoparticles that hold them together so as to maintain the integrity of the assembly throughout the transfer process. The application of these nanoparticle assemblies as solution-based surface-enhanced Raman scattering (SERS) materials is demonstrated by trapping analyte molecules in the nanoparticle gaps during assembly, yielding uniformly high enhancement factors at all stages of the fabrication process.

11.
Anal Chem ; 84(21): 9303-9, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23043560

RESUMO

Simple and rapid detection of trace amounts of melamine in milk products has been achieved with a portable sensor system based on surface-enhanced Raman scattering (SERS). The sensor system comprised high-performance gold nanofinger SERS sensor chips and a custom-built prototype portable Raman spectrometer. Compared to the FDA procedure and previously reported studies that were limited to laboratory settings, our sampling and analytical methods are simple (with one sampling step), less time-consuming, and cost-effective. We found the limit of detection (LOD) of the melamine is 120 parts per trillion (ppt) in water and 100 parts per billion (ppb) in infant formula, which are well below the FDA's tolerance level of 1 ppm in infant formula.

12.
ACS Nano ; 6(7): 6446-52, 2012 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-22735072

RESUMO

Deterministic patterning or assembly of nanoparticles often requires complex processes that are not easily incorporated into system architectures of arbitrary design. We have developed a technique to fabricate deterministic nanoparticle assemblies using simple and inexpensive nanoimprinting equipment and procedures. First, a metal film is evaporated onto flexible polymer pillars made by nanoimprinting. The resulting metal caps on top of the pillars can be pulled into assemblies of arbitrary design by collapsing the pillars in a well-controlled manner. The nanoparticle assemblies are then transferred from the pillars onto a new substrate via nanoimprinting with the aid of either cold welding or chemical bonding. Using this technique, a variety of patterned nanoparticle assemblies of Au and Ag with a critical dimension less than 2 nm were fabricated and transferred to silicon-, glass-, and metal-coated substrates. Separating the nanostructure assembly from the final architecture removes significant design constraints from devices incorporating nanoparticle assemblies. The application of this process as a technique for generating surface-enhanced Raman spectroscopy substrates is presented.

13.
Nano Lett ; 11(6): 2538-42, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21604751

RESUMO

Multiparticle assemblies of nanoscale structures are the fundamental building blocks for powerful plasmonic devices. Here we show the controlled formation of polygonal metal nanostructure assemblies, including digon, trigon, tetragon, pentagon, and hexagon arrays, which were formed on top of predefined flexible polymer pillars that undergo self-coalescence, analogous to finger closing, with the aid of microcapillary forces. This hybrid approach of combining top-down fabrication with self-assembly enables the formation of complex nanoplasmonic structures with sub-nanometer gaps between gold nanoparticles. On comparison of the polygon-shaped assemblies, the symmetry dependence of the nanoplasmonic structures was determined for application to surface enhanced Raman spectroscopy (SERS), with the pentagonal assembly having the largest Raman enhancement for the tested molecules. Electromagnetic simulations of the polygonal structures were performed to visualize the field enhancements of the hot spots so as to guide the rational design of optimal SERS structures.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Campos Eletromagnéticos , Tamanho da Partícula , Análise Espectral Raman , Propriedades de Superfície
14.
J Am Chem Soc ; 133(21): 8234-9, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21520938

RESUMO

The binding of trans-1,2-bis(4-pyridyl)-ethylene (BPE) molecules on substrates arrayed with flexible gold nanofingers has been studied by surface-enhanced Raman spectroscopy (SERS) and angle-resolved X-ray photoelectron spectroscopy (AR-XPS). On the basis of the SERS and XPS results, BPE molecules are found to interact with the gold nanofingers through the lone pair electrons of pyridyl nitrogens, not through delocalized π electrons. Furthermore, after comparing the AR-XPS spectra of finger arrays preclosed before exposure to BPE with the spectra of arrays that closed after exposure to BPE, we observed in the latter case, at grazing takeoff angles, an increase in the component of the nitrogen photoelectron peak associated with pyridyl nitrogen atoms residing on bridging sites. These results demonstrate that a small percentage of BPE molecules was trapped between the neighboring gold finger tips during the finger closing process. However, because these trapped BPE molecules coincidently resided in the hot spots formed among the touching finger tips, the substantial increase in the observed SERS signal was dominated by the contribution from this small minority of BPE molecules.

15.
Anal Chem ; 82(23): 9686-93, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21049960

RESUMO

Cardiac markers in human serum with concentrations less than 0.1 ng/mL were analyzed by use of a guided-mode resonance (GMR) biosensor. Cardiac troponin I (cTnI), creatine kinase MB (CK-MB), and myoglobin (MYO) were monitored in the serum of both patients and healthy controls. Dose-response curves ranging from 0.05 to 10 ng/mL for cTnI, from 0.1 to 10 ng/mL for CK-MB, and from 0.03 to 1.7 µg/mL for MYO were obtained. The limits of detection (LOD) for cTnI, CK-MB, and MYO were less than 0.05, 0.1, and 35 ng/mL, respectively. Analysis time was 30 min, which is short enough to meet clinical requirements. Antibody immobilization and the hydrophilic properties of the guided-mode resonance filter (GMRF) surface were investigated by X-ray photoelectron spectroscopy (XPS) and by monitoring the peak wavelength shift and water contact angle (CA). Both assays used to evaluate the surface density of the immobilized antibodies, a sandwich enzyme-linked immunosorbent assay (ELISA) and a sandwich immunogold assay, showed that the antibodies were successfully immobilized and sufficiently aligned to detect the low concentration of biomarkers. Our results show that the GMR biosensor will be very useful in developing low-cost portable biosensors that can screen for cardiac diseases.


Assuntos
Técnicas Biossensoriais/métodos , Creatina Quinase Forma MB/sangue , Mioglobina/sangue , Troponina I/sangue , Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , Biomarcadores/sangue , Ouro/química , Humanos , Espectroscopia Fotoeletrônica
16.
Langmuir ; 26(10): 7355-64, 2010 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-20205399

RESUMO

Anionic sulfate (SO(4)(-))-functionalized polystyrene (PS) nanoparticles were prepared by the thermal decomposition of potassium persulfate (KPS) in the presence of sodium tetraborate via emulsion polymerization. The presence of a SO(4)(-) group at a solid/liquid interface of a particle surface was confirmed by a zeta potential value of -40.6 mV as well as the shifting of S 2p spectra toward a lower-binding-energy region around 162.7 eV (2p(3/2)) and 164.4 eV (2p(1/2)) in X-ray photoelectron spectroscopy (XPS) analysis. The electrostatic attraction between positively charged antibodies of human immunoglobulin G (hIgG) and cardiac troponin I (cTnI) and negatively charged particle surfaces was accomplished. The atomic force microscopy (AFM) measurement and bicinchoninic acid (BCA) assay results show binding structure between hIgG and antibodies of hIgG (anti-hIgG) with a gradual increase in particle diameter to 152.6 nm (bare), 170.2 nm (hIgG), and 178.9 nm (hIgG/anti-hIgG). Surface coverage densities of 331.4 ng/cm(2) (hIgG) and 320.3 ng/cm(2) (cTnI) and the binding capacity of hIgG to HyLite-750-labeled Fab-specific anti-hIgG (approximately 81.2%) indicate that the majority of hIgG was immobilized with a Y-shaped orientation. The sandwich immunoassay results provide the evidence that the immunological activity of cTnI on the PS nanoparticle surface was retained because the binding activity of the cTnI-PS nanoparticle/cTnI (antigen)/detection cTnI-antibody reaction showed a 5-fold higher activity than that of the cTnI-PS nanoparticle/human serum albumin (HSA)/detection cTnI antibody used as a negative control.


Assuntos
Imunoensaio , Imunoglobulina G/química , Nanopartículas/química , Poliestirenos/química , Sulfatos/química , Troponina I/química , Ânions/química , Anticorpos/química , Anticorpos/imunologia , Reações Antígeno-Anticorpo , Humanos , Imunoglobulina G/imunologia , Modelos Imunológicos , Tamanho da Partícula , Poliestirenos/síntese química , Poliestirenos/imunologia , Sulfatos/síntese química , Sulfatos/imunologia , Propriedades de Superfície , Troponina I/imunologia
17.
Biosens Bioelectron ; 25(7): 1767-73, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20093001

RESUMO

In order to identify changes in the levels of key proteins in response to the onset or development of a disease, the research fields of proteomics and genomics seek to develop new biomarkers. Specifically, simple and fast biomarker screens have a central role in many areas of healthcare, including disease diagnosis and drug discovery. Biologically modified field-effect transistor (BioFET) is one of the most attractive approaches because of the on-chip integration of the sensor array, fast response, high reliability and low-cost mass production. However, the BioFETs used to detect macromolecules have been operated only in buffer solution with low salt concentrations because of the Debye screening length of blood or serum. Here we report a novel detection technique for direct label-free immunodetection of cancer markers in human serum using a Si-FET that was fabricated by conventional photolithographic processes. The proposed sensing method shows no dissociation of antigen-antibody binding as in general immunoassays, unlike the previous reports on Si-FET sensors. This method therefore overcomes the Debye length problem of immunodetection in human fluids, such as serum, that are generally encountered by FET-based biosensors. Our results demonstrate specific label-free and real-time immunodetection of a cancer marker at a concentration of 0.2 ng/mL in human serum, quantitative detection of the marker from 0.2 to 114 ng/mL, and successful multiplexed sensing of three different cancer markers. We believe that connecting our simple electrical detection method, which does not require pretreatment of serum, with well-established whole blood filter technology will contribute to the development of new point-of-care testing (POCT) sensors.


Assuntos
Biomarcadores Tumorais/sangue , Técnicas Biossensoriais/instrumentação , Análise Química do Sangue/instrumentação , Antígeno Carcinoembrionário/sangue , Condutometria/instrumentação , Análise de Injeção de Fluxo/instrumentação , Imunoensaio/instrumentação , Técnicas Biossensoriais/métodos , Condutometria/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Coloração e Rotulagem , Integração de Sistemas , Transistores Eletrônicos
18.
Langmuir ; 25(19): 11692-7, 2009 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-19788222

RESUMO

An antibody immobilization was investigated using a self-assembled monolayer (SAM) over the highly refractive coatings with a SiO2, TiO2, or Si3N4 substrate. The immobilization was characterized by analyzing the hydrophilic properties of hydroxyl (OH) groups on surface coatings with contact angle (CA) measurements to enhance protein immobilization. The hydroxyl (OH) group was formed in greater amounts as the oxygen plasma exposure time was increased, which resulted in a large enhancement in antibody immobilization. It indicated that hydroxyl (OH) group formation is critical for developing a label-free optical transducer with a high sensitivity.


Assuntos
Anticorpos Imobilizados/química , Hidróxidos/química , Titânio/química , Aminas/química , Animais , Anticorpos Imobilizados/análise , Anticorpos Imobilizados/imunologia , Anticorpos Monoclonais/análise , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Bovinos , Ensaio de Imunoadsorção Enzimática , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas Metálicas/química , Oxigênio/química , Antígeno Prostático Específico/imunologia , Propriedades de Superfície , Molhabilidade
19.
Nanotechnology ; 20(47): 475501, 2009 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19858563

RESUMO

The sensitivity of 'top-down' fabricated Si nanochannel field effect transistor (FET) biosensors has been analyzed quantitatively, as a function of the channel width and doping concentration. We have fabricated 130-, 150-, and 220 nm-wide Si FET channels with 40 nm-thick p-type silicon-on-insulator (SOI) layers doped at 8 x 10(17) and 2 x 10(18) cm(-3), and characterized their sensitivity in response to the variation of surface charges as hydrogen ion sensors within buffer solutions of various pH levels. Within the range of channel width and doping concentration investigated, the pH sensitivity of Si channels is enhanced much more effectively by decreasing the doping concentration than by reducing the channel width, which suggests a practical strategy for achieving high sensitivity with less effort than to reduce the channel width. Similar behavior has also been confirmed in the immunodetection of prostate specific antigen (PSA). Combined with excellent reproducibility and uniformity of the channel structure, high controllability of the doping concentration can make the 'top-down' fabrication a very useful approach for the massive fabrication of high-sensitivity sensor platforms in a cost-effective way.


Assuntos
Técnicas Biossensoriais/instrumentação , Nanoestruturas/química , Silício/química , Transistores Eletrônicos , Eletricidade , Concentração de Íons de Hidrogênio , Análise Espectral , Fatores de Tempo
20.
J Am Chem Soc ; 128(29): 9326-7, 2006 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-16848456

RESUMO

Hydrolysis of In(O-iPr)3 by 10 molar excess of water at 90 degrees C in a surfactant/solvent mixture of oleylamine/oleic acid/trioctylamine provides very small nanoparticles (<5 nm in diameter) of In(O)(OH). Subsequent in situ thermolysis of the formed In(O)(OH) nanoparticles at 350 degrees C and ambient pressure produces monodisperse h-In2O3 nanocubes, which can form an extended two-dimensional array on a flat surface. The size of the In2O3 nanocubes (8, 10, and 12 nm) could be easily controlled by the simple change in the amounts of employed surfactants. The h-In2O3 nanocube samples show blue PL emissions at room temperature due to, presumably, systematic oxygen vacancy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA