Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 295
Filtrar
1.
Small ; : e2401080, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566553

RESUMO

Non-fullerene acceptors (NFAs) significantly enhance photovoltaic performance in organic solar cells (OSCs) using halogenated solvents and additives. However, these solvents are environmentally detrimental and unsuitable for industrial-scale production, and the issue of OSCs' poor long-term stability persists. This report introduces eight asymmetric NFAs (IPCnF-BBO-IC2F, IPCnF-BBO-IC2Cl, IPCnCl-BBO-IC2F, and IPCnCl-BBO-IC2Cl, where n = 1 and 2). These NFAs comprise a 12,13-bis(2-butyloctyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2'',3'':4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno-[3,2-b]indole (BBO) core. One end of the core attaches to a mono- or di-halogenated 9H-indeno[1,2-b]pyrazine-2,3-dicarbonitrile (IPC) end group (IPC1F, IPC1Cl, IPC2F, or IPC2Cl), while the other end connects to a 2-(5,6-dihalo-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (IC) end group (IC2F or IC2Cl). The optical and electronic properties of these NFAs can be finely tuned by controlling the number of halogen atoms. Crucially, these NFAs demonstrate excellent compatibility with PM6 even in o-xylene, facilitating the production of additive-free OSCs. The di-halogenated IPC-based NFAs outperform their mono-halogenated counterparts in photovoltaic performance within OSCs. Remarkably, the di-halogenated IPC-based NFAs maintain 94‒98% of their initial PCEs over 2000 h in air without encapsulation, indicating superior long-term device stability. These findings imply that the integration of di-halogenated IPCs in asymmetric NFA design offers a promising route to efficient, stable OSCs manufactured through environmentally friendly processes.

2.
Gut Microbes ; 16(1): 2341635, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38634770

RESUMO

Carbapenem-resistant Enterobacteriaceae (CRE) pose a global health threat; however, there is still limited understanding of the risk factors and underlying mechanisms of CRE colonization in the gut microbiome. We conducted a matched case-control study involving 282 intensive care unit patients to analyze influencing covariates on CRE colonization. Subsequently, their effects on the gut microbiome were analyzed in a subset of 98 patients (47 CRE carriers and 51 non-CRE carriers) using whole metagenome sequences. The concomitant use of proton pump inhibitors (PPIs) and antibiotics was a significant risk factor for CRE colonization. The gut microbiome differed according to PPI administration, even within the CRE and non-CRE groups. Moreover, the transfer of mobile genetic elements (MGEs) harboring carbapenem resistance genes (CRGs) between bacteria was higher in the PPI-treated group than in the PPI-not-treated group among CRE carriers. The concomitant use of PPIs and antibiotics significantly alters the gut microbiome and increases the risk of CRE colonization by facilitating the transfer of CRGs among bacteria of the gut microbiome. Based on these findings, improved stewardship of PPIs as well as antibiotics can provide strategies to reduce the risk of CRE colonization, thereby potentially improving patient prognosis.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Microbioma Gastrointestinal , Humanos , Inibidores da Bomba de Prótons , Estudos de Casos e Controles , Bactérias , Antibacterianos , Resistência Microbiana a Medicamentos
3.
Adv Mater ; 36(19): e2311029, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38299366

RESUMO

Practical application of triboelectric nanogenerators (TENGs) has been challenging, particularly, under harsh environmental conditions. This work proposes a novel 3D-fused aromatic ladder (FAL) structure as a tribo-positive material for TENGs, to address these challenges. The 3D-FAL offers a unique materials engineering platform for tailored properties, such as high specific surface area and porosity, good thermal and mechanical stability, and tunable electronic properties. The fabricated 3D-FAL-based TENG reaches a maximum peak power density of 451.2 µW cm-2 at 5 Hz frequency. More importantly, the 3D-FAL-based TENG maintains stable output performance under harsh operating environments, over wide temperature (-45-100 °C) and humidity ranges (8.3-96.7% RH), representing the development of novel FAL for sustainable energy generation under challenging environmental conditions. Furthermore, the 3D-FAL-based TENG proves to be a promising device for a speed monitoring system engaging reconstruction in virtual reality in a snowy environment.

4.
Sci Adv ; 9(45): eadj8276, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37948529

RESUMO

InAs semiconductor nanocrystals (NCs) exhibit intriguing electrical/optoelectronic properties suitable for next-generation electronic devices. Although there is a need for both n- and p-type semiconductors in such devices, InAs NCs typically exhibit only n-type characteristics. Here, we report InAs NCs with controlled semiconductor polarity. Both p- and n-type InAs NCs can be achieved from the same indium chloride and aminoarsine precursors but by using two different reducing agents, diethylzinc for p-type and diisobutylaluminum hydride for n-type NCs, respectively. This is the first instance of semiconductor polarity control achieved at the synthesis level for InAs NCs and the entire semiconductor nanocrystal systems. Comparable field-effective mobilities for holes (3.3 × 10-3 cm2/V·s) and electrons (3.9 × 10-3 cm2/V·s) are achieved from the respective NC films. The mobility values allow the successful fabrication of complementary logic circuits, including NOT, NOR, and NAND comprising photopatterned p- and n-channels based on InAs NCs.

5.
NPJ Biofilms Microbiomes ; 9(1): 83, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907565

RESUMO

Sea urchins are biotic factors driving the decline of kelp forests in marine ecosystems. However, few studies have analyzed the microbiota of surviving sea urchins in barren regions with scarce diet resources. Here, we analyzed the microbiota in the pharynx and gut of the sea urchin Mesocentrotus nudus located along the coast of an expanding barren region in South Korea. The ecological adaptation of genera in sea urchins was predicted using the neutral assembly model. The pharynx and gut microbiota were different, and microbes in the surrounding habitats dispersed more to the pharynx than to the gut. The gut microbiota in sea urchins is altered by barren severity and plays different roles in host energy metabolism. These findings help to understand the microbiota in sea urchins according to urchin barren and its contribution to the survival of sea urchins in severe barren regions with limited macroalgae.


Assuntos
Kelp , Microbiota , Animais , Cadeia Alimentar , Ouriços-do-Mar
7.
Adv Mater ; 35(45): e2302786, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37421369

RESUMO

An unprecedented but useful functionality of perfluoroarenes to enable exciton scissoring in photomultiplication-type organic photodiodes (PM-OPDs) is reported. Perfluoroarenes that are covalently connected to polymer donors via a photochemical reaction enable the demonstration of high external quantum efficiency and B-/G-/R-selective PM-OPDs without the use of conventional acceptor molecules. The operation mechanism of the suggested perfluoroarene-driven PM-OPDs, how covalently bonded polymer donor:perfluoroarene PM-OPDs can perform as effectively as polymer donor:fullerene blend-based PM-OPDs, is investigated. By employing a series of arenes and conducting steady-state/time-resolved photoluminescence and transient absorption spectroscopy analyses, it is found that interfacial band bending between the perfluoroaryl group and polymer donor is responsible for exciton scissoring and subsequent electron trapping, which induces photomultiplication. Owing to the acceptor-free and covalently interconnected photoactive layer in the suggested PM-OPDs, superior operational and thermal stabilities are observed. Finally, finely patterned B-/G-/R-selective PM-OPD arrays that enable the construction of highly sensitive passive matrix-type organic image sensors are demonstrated.

8.
Gut Microbes ; 15(1): 2221811, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305974

RESUMO

The prevalence and occurrence of mucin-degrading (MD) bacteria, such as Akkermansia muciniphila and Ruminococcus gnavus, is highly associated with human health and disease states. However, MD bacterial physiology and metabolism remain elusive. Here, we assessed functional modules of mucin catabolism, through a comprehensive bioinformatics-aided functional annotation, to identify 54 A. muciniphila genes and 296 R. gnavus genes. The reconstructed core metabolic pathways coincided with the growth kinetics and fermentation profiles of A. muciniphila and R. gnavus grown in the presence of mucin and its constituents. Genome-wide multi-omics analyses validated the nutrient-dependent fermentation profiles of the MD bacteria and identified their distinct mucolytic enzymes. The distinct metabolic features of the two MD bacteria induced differences in the metabolite receptor levels and inflammatory signals of the host immune cells. In addition, in vivo experiments and community-scale metabolic modeling demonstrated that different dietary intakes influenced the abundance of MD bacteria, their metabolic fluxes, and gut barrier integrity. Thus, this study provides insights into how diet-induced metabolic differences in MD bacteria determine their distinct physiological roles in the host immune response and the gut ecosystem.


Assuntos
Microbioma Gastrointestinal , Mucinas , Humanos , Multiômica , Ecossistema , Bactérias/genética
9.
Medicina (Kaunas) ; 59(6)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37374325

RESUMO

Background and Objectives: This study aimed to evaluate the added value of cone-beam computed tomography (CBCT) for detecting hepatocellular carcinomas (HCC) and feeding arteries during transcatheter arterial chemoembolization (TACE). Material and methods: Seventy-six patients underwent TACE and CBCT. We subcategorized patients into groups I (61 patients: possible superselection of tumor/feeding arteries) and II (15 patients: limited superselection of tumor/feeding arteries). We evaluated fluoroscopy time and radiation dose during TACE. Two blinded radiologists independently performed an interval reading based on digital subtraction angiography (DSA) imaging only and DSA combined with CBCT in group I. Result: The mean total fluoroscopy time was 1456.3 ± 605.6 s. The mean dose-area product (DAP), mean DAP of CBCT, and mean ratio of DAP of CBCT to total DAP was 137.1 ± 69.2 Gy cm2, 18.3 ± 7.1 Gy cm2, and 13.3%, respectively. The sensitivity for detecting HCC increased after the additional CBCT reading, from 69.6% to 97.3% and 69.6% to 96.4% for readers 1 and 2, respectively. The sensitivity for detecting feeding arteries increased from 60.3% to 96.6% and 63.8% to 97.4% for readers 1 and 2, respectively. Conclusions: CBCT can increase sensitivity for detecting HCCs and feeding arteries without significantly increasing the radiation exposure.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Exposição à Radiação , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/terapia , Artérias/patologia , Tomografia Computadorizada de Feixe Cônico/métodos , Estudos Retrospectivos
10.
Insects ; 14(5)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37233100

RESUMO

Tephritid fruit flies are among the most destructive agricultural pests of fruits and vegetables worldwide and can impose trade barriers against the movement of fresh tropical commodities. Primary pre-harvest control methods for these flies rely on the spraying of conventional chemical insecticides or bait sprays. However, resistance to these control methods has been reported in fruit flies. Erythritol is a non-nutritive sugar alternative for human consumption, which has been tested and confirmed for its insecticidal properties against various insect pest species. In this study, using laboratory bioassays, we evaluated the insecticidal effect of erythritol alone or various erythritol formulations containing sucrose and/or protein on four tropical fruit fly species established in Hawaii (e.g., melon fly, Mediterranean fruit fly, oriental fruit fly, and Malaysian fruit fly). In addition, the effects of other non-nutritive hexose and pentose sugar alcohols, such as sorbitol, mannitol, and xylitol, were tested. Among the different standalone and combinatory treatments tested, 1M erythritol and a combinatory formulation of 2M erythritol + 0.5M sucrose appeared to be the most detrimental to the survival of all four species of tested flies, suggesting the potential of using erythritol as a non-toxic management tool for the control of tropical tephritid fruit flies.

11.
Microbiol Spectr ; : e0234422, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36877076

RESUMO

Diabetic mellitus nephropathy (DMN) is a serious complication of diabetes and a major health concern. Although the pathophysiology of diabetes mellitus (DM) leading to DMN is uncertain, recent evidence suggests the involvement of the gut microbiome. This study aimed to determine the relationships among gut microbial species, genes, and metabolites in DMN through an integrated clinical, taxonomic, genomic, and metabolomic analysis. Whole-metagenome shotgun sequencing and nuclear magnetic resonance metabolomic analyses were performed on stool samples from 15 patients with DMN and 22 healthy controls. Six bacterial species were identified to be significantly elevated in the DMN patients after adjusting for age, sex, body mass index, and estimated glomerular filtration rate (eGFR). Multivariate analysis found 216 microbial genes and 6 metabolites (higher valine, isoleucine, methionine, valerate, and phenylacetate levels in the DMN group and higher acetate levels in the control group) that were differentially present between the DMN and control groups. Integrated analysis of all of these parameters and clinical data using the random-forest model showed that methionine and branched-chain amino acids (BCAAs) were among the most significant features, next to the eGFR and proteinuria, in differentiating the DMN group from the control group. Metabolic pathway gene analysis of BCAAs and methionine also revealed that many genes involved in the biosynthesis of these metabolites were elevated in the six species that were more abundant in the DMN group. The suggested correlation among taxonomic, genetic, and metabolic features of the gut microbiome would expand our understanding of gut microbial involvement in the pathogenesis of DMN and may provide potential therapeutic targets for DMN. IMPORTANCE Whole metagenomic sequencing uncovered specific members of the gut microbiota associated with DMN. The gene families derived from the discovered species are involved in the metabolic pathways of methionine and branched-chain amino acids. Metabolomic analysis using stool samples showed increased methionine and branched-chain amino acids in DMN. These integrative omics results provide evidence of the gut microbiota-associated pathophysiology of DMN, which can be further studied for disease-modulating effects via prebiotics or probiotics.

12.
Polymers (Basel) ; 15(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36987135

RESUMO

Organic solar cells (OSCs) demonstrating high power conversion efficiencies have been mostly fabricated using halogenated solvents, which are highly toxic and harmful to humans and the environment. Recently, non-halogenated solvents have emerged as a potential alternative. However, there has been limited success in attaining an optimal morphology when non-halogenated solvents (typically o-xylene (XY)) were used. To address this issue, we studied the dependence of the photovoltaic properties of all-polymer solar cells (APSCs) on various high-boiling-point non-halogenated additives. We synthesized PTB7-Th and PNDI2HD-T polymers that are soluble in XY and fabricated PTB7-Th:PNDI2HD-T-based APSCs using XY with five additives: 1,2,4-trimethylbenzene (TMB), indane (IN), tetralin (TN), diphenyl ether (DPE), and dibenzyl ether (DBE). The photovoltaic performance was determined in the following order: XY + IN < XY + TMB < XY + DBE ≤ XY only < XY + DPE < XY + TN. Interestingly, all APSCs processed with an XY solvent system had better photovoltaic properties than APSCs processed with chloroform solution containing 1,8-diiodooctane (CF + DIO). The key reasons for these differences were unraveled using transient photovoltage and two-dimensional grazing incidence X-ray diffraction experiments. The charge lifetimes of APSCs based on XY + TN and XY + DPE were the longest, and their long lifetime was strongly associated with the polymer blend film morphology; the polymer domain sizes were in the nanoscale range, and the blend film surfaces were smoother, as the PTB7-Th polymer domains assumed an untangled, evenly distributed, and internetworked morphology. Our results demonstrate that the use of an additive with an optimal boiling point facilitates the development of polymer blends with a favorable morphology and can contribute to the widespread use of eco-friendly APSCs.

13.
J Obes Metab Syndr ; 31(4): 303-312, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36581590

RESUMO

Background: The prevalence of obesity has been continuously increasing, especially in rural areas of South Korea. Therefore, it is important to examine various genetic, behavioral, and environmental factors associated with obesity in these rural areas. The Korean Society for the Study of Obesity commenced a community-based prospective cohort study of the Gangwon area called the Gangwon Obesity and Metabolic Syndrome (GOMS) study to investigate longitudinal changes in the status of obesity and its related factors. Methods: A total of 317 adults 40-69 years of age were recruited from Hongcheon and Inje districts, Gangwon province, as part of the first wave of this cohort study. Information on participants' demographic, behavioral, psychological, dietary, and environmental factors and past medical histories were collected by self-administered questionnaires and interviewer-administered questionnaires. Anthropometric measurements, blood tests, and a hand grip strength test were performed, and skin keratin and stool samples were collected. Among the 317 enrolled subjects, two participants who did not have anthropometric data were excluded from the data analyses, resulting in an inclusion of a total of 315 participants. Results: The mean age of the 315 participants in the GOMS initial baseline survey was 58.5 years old, 87 of them were men, and the mean body mass index was 24.7±3.7 kg/m2. Among all participants, 48.9% had hypertension, 21.4% had diabetes mellitus (DM), 55.6% had dyslipidemia, and 46.0% had metabolic syndrome (MS). Both the prevalence rates of DM and MS were significantly higher in men. Conclusion: The first baseline survey of the GOMS study was initiated, and a more detailed analysis of respondents' data is expected to be continued. Further follow-up and additional recruitment will allow the investigation of risk factors and the etiology of obesity and its comorbidities in rural areas of Gangwon province.

14.
iScience ; 25(10): 105199, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36248739

RESUMO

Buckling is a loss of structural stability. It occurs in long slender structures or thin plate structures which is subjected to compressive forces. For the structural materials, such a sudden change in shape has been considered to be avoided. In this study, we utilize the Au nanowire's buckling instability for the electrical measurement. We confirmed that the high-strength single crystalline Au nanowire with an aspect ratio of 150 and 230-nm-diameter shows classical Euler buckling under constant compressive force without failure. The buckling instability enables stable contact between the Au nanowire and the substrate without any damage. Clearly, the in situ electrical measurement shows a transition of the contact resistance between the nanowire and the substrate from the Sharvin (ballistic limit) mode to the Holm (Ohmic) mode during deformation, enabling reliable electrical measurements. This study suggests Au nanowire probes exhibiting structural instability to ensure stable and precise electrical measurements at the nanoscale.

15.
Polymers (Basel) ; 14(18)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36145959

RESUMO

In this work, we report the synthesis and photovoltaic properties of IEBICO-4F, IEHICO-4F, IOICO-4F, and IDICO-4F non-fullerene acceptors (NFAs) bearing different types of alkyl chains (2-ehtylhexyl (EH), 2-ethylbutyl (EB), n-octyl (O), and n-decyl (D), respectively). These NFAs are based on the central indacenodithiophene (IDT) donor core and the same terminal group of 2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (IC-2F), albeit with different side chains appended to the thiophene bridge unit. Although the side chains induced negligible differences between the NFAs in terms of optical band gaps and molecular energy levels, they did lead to changes in their melting points and crystallinity. The NFAs with branched alkyl chains exhibited weaker intermolecular interactions and crystallinity than those with linear alkyl chains. Organic solar cells (OSCs) were fabricated by blending these NFAs with the p-type polymer PTB7-Th. The NFAs with appended branched alkyl chains (IEHICO-4F and IEBICO-4F) possessed superior photovoltaic properties than those with appended linear alkyl chains (IOICO-4F and IDICO-4F). This result can be ascribed mainly to the thin-film morphology. Furthermore, the NFA-based blend films with appended branched alkyl chains exhibited the optimal degree of aggregation and miscibility, whereas the NFA-based blend films with appended linear alkyl chains exhibited higher levels of self-aggregation and lower miscibility between the NFA molecule and the PTB7-Th polymer. We demonstrate that changing the alkyl chain on the π-bridging unit in fused-ring-based NFAs is an effective strategy for improving their photovoltaic performance in bulk heterojunction-type OSCs.

16.
Adv Mater ; 34(43): e2205504, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35985813

RESUMO

Electroluminescence from quantum dots (QDs) is a suitable photon source for futuristic displays offering hyper-realistic images with free-form factors. Accordingly, a nondestructive and scalable process capable of rendering multicolored QD patterns on a scale of several micrometers needs to be established. Here, nondestructive direct photopatterning for heavy-metal-free QDs is reported using branched light-driven ligand crosslinkers (LiXers) containing multiple azide units. The branched LiXers effectively interlock QD films via photo-crosslinking native aliphatic QD surface ligands without compromising the intrinsic optoelectronic properties of QDs. Using branched LiXers with six sterically engineered azide units, RGB QD patterns are achieved on the micrometer scale. The photo-crosslinking process does not affect the photoluminescence and electroluminescence characteristics of QDs and extends the device lifetime. This nondestructive method can be readily adapted to industrial processes and make an immediate impact on display technologies, as it uses widely available photolithography facilities and high-quality heavy-metal-free QDs with aliphatic ligands.

17.
J Microbiol Biotechnol ; 32(8): 967-975, 2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-35879284

RESUMO

Kombucha mutualistic community (KMC) is composed by acetic acid bacteria and yeasts, producing fermented tea with health benefits. As part of the BIOlogy and Mars EXperiment (BIOMEX) project, the effect of Mars-like conditions on the KMC was analyzed. Here, we analyzed metagenome-assembled genomes (MAGs) of the Komagataeibacter, which is a predominant genus in KMC, to understand their roles in the KMC after exposure to Mars-like conditions (outside the International Space Station) based on functional genetic elements. We constructed three MAGs: K. hansenii, K. rhaeticus, and K. oboediens. Our results showed that (i) K. oboediens MAG functionally more complex than K. hansenii, (ii) K. hansenii is a keystone in KMCs with specific functional features to tolerate extreme stress, and (iii) genes related to the PPDK, betaine biosynthesis, polyamines biosynthesis, sulfate-sulfur assimilation pathway as well as type II toxin-antitoxin (TA) system, quorum sensing (QS) system, and cellulose production could play important roles in the resilience of KMC after exposure to Mars-like stress. Our findings show the potential mechanisms through which Komagataeibacter tolerates the extraterrestrial stress and will help to understand minimal microbial composition of KMC for space travelers.


Assuntos
Acetobacteraceae , Metagenoma , Celulose , Leveduras
18.
Artigo em Inglês | MEDLINE | ID: mdl-35575207

RESUMO

To commercialize organic solar cells (OSCs), changes in the optimized morphology of the photoactive layer caused by external stimuli that cause degradation must be addressed. This work improves OSC stability by utilizing the cross-linking additive 1,8-dibromooctane (DBO) and a sequential deposition process (XSqD) to fabricate the photoactive layer. The cross-linking additive in the donor polymer (PTB7-Th) improves polymer crystallinity and immobilizes the crystalline morphology by partial photo-cross-linking. Ellipsometry experiments confirm the increase in the glass transition temperature of cross-linked PTB7-Th. The polymer crystallinity is further improved after removal of non-cross-linked polymer and residual additive by chlorobenzene. The cross-linked polymer layer forms an efficient and stable heterojunction with a nonfullerene acceptor (IEICO-4F) layer via an XSqD process. The OSC based on the immobilized PTB7-Th exhibits excellent stability against light soaking and thermal aging.

19.
Gut Microbes ; 14(1): 2068366, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35485368

RESUMO

The gut microbiome influences the development of allergic diseases during early childhood. However, there is a lack of comprehensive understanding of microbiome-host crosstalk. Here, we analyzed the influence of gut microbiome dynamics in early childhood on atopic dermatitis (AD) and the potential interactions between host and microbiome that control this homeostasis. We analyzed the gut microbiome in 346 fecal samples (6-36 months; 112 non-AD, 110 mild AD, and 124 moderate to severe AD) from the Longitudinal Cohort for Childhood Origin of Asthma and Allergic Disease birth cohort. The microbiome-host interactions were analyzed in animal and in vitro cell assays. Although the gut microbiome maturated with age in both AD and non-AD groups, its development was disordered in the AD group. Disordered colonization of short-chain fatty acids (SCFA) producers along with age led to abnormal SCFA production and increased IgE levels. A butyrate deficiency and downregulation of GPR109A and PPAR-γ genes were detected in AD-induced mice. Insufficient butyrate decreases the oxygen consumption rate of host cells, which can release oxygen to the gut and perturb the gut microbiome. The disordered gut microbiome development could aggravate balanced microbiome-host interactions, including immune responses during early childhood with AD.


Assuntos
Dermatite Atópica , Microbioma Gastrointestinal , Microbiota , Animais , Butiratos , Ácidos Graxos Voláteis , Microbioma Gastrointestinal/genética , Humanos , Camundongos
20.
ACS Appl Mater Interfaces ; 14(12): 14410-14421, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35312277

RESUMO

Organic optoelectronic devices that can be fabricated at low cost have attracted considerable attention because they can absorb light over a wide frequency range and have high conversion efficiency, as well as being lightweight and flexible. Moreover, their performance can be significantly affected by the choice of the charge-selective interlayer material. Nonstoichiometric nickel oxide (NiOx) is an excellent material for the hole-transporting layer (HTL) of organic optoelectronic devices because of the good alignment of its valence band position with the highest occupied molecular orbital level of many p-type polymers. Herein, we report a simple low-temperature process for the synthesis of NiOx nanoparticles (NPs) that can be well dispersed in solution for long-term storage and easily used to form thin NiOx NP layers. NiOx NP-based organic photodiode (OPD) devices demonstrated high specific detectivity (D*) values of 1012-1013 jones under various light intensities and negative biases. The D* value of the NiOx NP-based OPD device was 4 times higher than that of a conventional poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-based device, an enhancement that originated mainly from the 16 times decreased leakage current. The NiOx NP-based OPD device demonstrated better reliability over a wide range of light intensities and operational biases in comparison to a device with a conventional sol-gel-processed NiOx film. More importantly, the NiOx NP-based OPD showed long-term device stability superior to those of the PEDOT:PSS and sol-gel-processed NiOx-based devices. We highlight that our low-temperature solution-processable NiOx NP-based HTL could become a crucial component in the fabrication of stable high-performance OPDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA