Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
FASEB Bioadv ; 5(12): 541-557, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38094159

RESUMO

Mustn1, a gene expressed exclusively in the musculoskeletal system, was shown in previous in vitro studies to be a key regulator of myogenic differentiation and myofusion. Other studies also showed Mustn1 expression associated with skeletal muscle development and hypertrophy. However, its specific role in skeletal muscle function remains unclear. This study sought to investigate the effects of Mustn1 in a conditional knockout (KO) mouse model in Pax7 positive skeletal muscle satellite cells. Specifically, we investigated the potential effects of Mustn1 on myogenic gene expression, grip strength, alterations in gait, ex vivo investigations of isolated skeletal muscle isometric contractions, and potential changes in the composition of muscle fiber types. Results indicate that Mustn1 KO mice did not present any substantial phenotypic changes or significant variations in genes related to myogenic differentiation and fusion. However, an approximately 10% decrease in overall grip strength was observed in the 2-month-old KO mice in comparison to the control wild type (WT), but this decrease was not significant when normalized by weight. KO mice also generated approximately 8% higher vertical force than WT at 4 months in the hindlimb. Ex vivo experiments revealed decreases in about 20 to 50% in skeletal muscle contractions and about 10%-20% fatigue in soleus of both 2- and 4-month-old KO mice, respectively. Lastly, immunofluorescent analyses showed a persistent increase of Type IIb fibers up to 15-fold in the KO mice while Type I fibers decreased about 20% and 30% at both 2 and 4 months, respectively. These findings suggest a potential adaptive or compensatory mechanism following Mustn1 loss, as well as hinting at an association between Mustn1 and muscle fiber typing. Collectively, Mustn1's complex roles in skeletal muscle physiology requires further research, particularly in terms of understanding the potential role of Mustn1 in muscle repair and regeneration, as well as with influence of exercise. Collectively, these will offer valuable insights into Mustn1's key biological functions and regulatory pathways.

3.
Physiol Rep ; 11(9): e15674, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37170065

RESUMO

Glucose homeostasis is closely regulated to maintain energy requirements of vital organs and skeletal muscle plays a crucial role in this process. Mustn1 is expressed during embryonic and postnatal skeletal muscle development and its function has been implicated in myogenic differentiation and myofusion. Whether Mustn1 plays a role in glucose homeostasis in anyway remains largely unknown. As such, we deleted Mustn1 in skeletal muscle using a conditional knockout (KO) mouse approach. KO mice did not reveal any specific gross phenotypic alterations in skeletal muscle. However, intraperitoneal glucose tolerance testing (IPGTT) revealed that 2-month-old male KO mice had significantly lower glycemia than their littermate wild type (WT) controls. These findings coincided with mRNA changes in genes known to be involved in glucose metabolism, tolerance, and insulin sensitivity; 2-month-old male KO mice had significantly higher expression of GLUT1 and GLUT10 transporters, MUP-1 while OSTN expression was lower. These differences in glycemia and gene expression were statistically insignificant after 4 months. Identical experiments in female KO and WT control mice did not indicate any differences at any age. Our results suggest a link between Mustn1 expression and glucose homeostasis during a restricted period of skeletal muscle development/maturation. While this is an observational study, Mustn1's relationship to glucose homeostasis appears to be more complex with a possible connection to other key proteins such as GLUTs, MUP-1, and OSTN. Additionally, our data indicate temporal and sex differences. Lastly, our findings strengthen the notion that Mustn1 plays a role in the metabolic capacity of skeletal muscle.


Assuntos
Glucose , Resistência à Insulina , Animais , Feminino , Masculino , Camundongos , Glucose/metabolismo , Resistência à Insulina/genética , Camundongos Knockout , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Fatores de Transcrição/metabolismo
4.
Case Rep Oncol Med ; 2023: 7348188, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36704640

RESUMO

Glioblastoma multiforme (GBM) is the most frequent malignant and aggressive type of glioma. Most cases of GBM present as a single solitary solid tumor; however, there are rare instances in which it may present as a cystic lesion. Here, we report an even rarer case of GBM presenting as bilateral multicystic lesions, mimicking infectious etiology. Our case highlights the importance of identifying clinical features of cystic GBM to ensure early diagnosis and treatment. A literature review was conducted in PubMed, looking at the common characteristics and treatment options for cystic GBM.

5.
J Exp Biol ; 225(19)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36106504

RESUMO

The ability to securely grasp substrates of variable diameter is critical to arboreal animals. Arboreal specialists have emerged across several vertebrate lineages - including mammals, lizards and amphibians - and several attempts have been made to quantify their grasping performance, by measuring either gripping (i.e. forces generated about an object or substrate enclosed within the digits) or pulling (i.e. the ability to resist being removed from a substrate) forces. In this study, we present data on both pulling and gripping performance across a range of substrate diameters (0.5-17.5 mm) within a model parrot species (Agapornis roseicollis). Parrots represent an ancient arboreal lineage, allowing us to compare their abilities with those of arboreal specialists within other tetrapod groups. Data were collected using 3D-printed perches of variable diameter, and forces were registered using either an AMTI low-load force plate (grip force) or a Harvard Apparatus portable strength tester (pull force). Gripping forces peaked at a 5 mm diameter perch, while pulling forces were greatest at a 2.5 mm diameter. All forces strongly diminished above 10 mm size, suggesting grip force is optimized when utilizing small perches, a finding which corresponds to observational studies of preferential perching habits among free-ranging parrots. Relative grasping performance (adjusted for body size) in parrots is roughly equivalent to that of other arboreal specialists from other tetrapod lineages, but low when compared with that of raptorial birds that utilize their feet during aerial prey capture. Further taxonomic sampling is encouraged to contextualize how grasping performance varies in an adaptive evolutionary context.


Assuntos
Agapornis , Lagartos , Papagaios , Animais , Força da Mão , Mamíferos , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA