Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Plant J ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743860

RESUMO

Proline metabolism plays a crucial role in both environmental stress responses and plant growth. However, the specific mechanism by which proline contributes to abiotic stress processes remains to be elucidated. In this study, we utilized atrzf1 (Arabidopsis thaliana ring zinc finger 1) as a parental line for T-DNA tagging mutagenesis and identified a suppressor mutant of atrzf1, designated proline content alterative 31 (pca31). The pca31 mutant suppressed the insensitivity of atrzf1 to dehydration stress during early seedling growth. Using Thermal Asymmetric Interlaced-PCR, we found that the T-DNA of pca31 was inserted into the promoter region of the At2g22620 gene, which encodes the cell wall enzyme rhamnogalacturonan lyase 1 (RGL1). Enzymatic assays indicated that RGL1 exhibited rhamnogalacturonan lyase activity, influencing cell wall pectin composition. The decrease in RGL1 gene expression suppressed the transcriptomic perturbation of the atrzf1 mutant. Silencing of the RGL1 gene in atrzf1 resulted in a sensitive phenotype similar to pca31 under osmotic stress conditions. Treatment with mannitol, salt, hydrogen peroxide, and abscisic acid induced RGL1 expression. Furthermore, we uncovered that RGL1 plays a role in modulating root growth and vascular tissue development. Molecular, physiological, and genetic experiments revealed that the positive modulation of RGL1 during abiotic stress was linked to the AtRZF1 pathway. Taken together, these findings establish that pca31 acts as a suppressor of atrzf1 in abiotic stress responses through proline and cell wall metabolisms.

2.
Plant Mol Biol ; 114(1): 13, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324104

RESUMO

E4, a ubiquitin (Ub) chain assembly factor and post-translational modification protein, plays a key role in the regulation of multiple cellular functions in plants during biotic or abiotic stress. We have more recently reported that E4 factor AtUAP1 is a negative regulator of the osmotic stress response and enhances the multi-Ub chain assembly of E3 ligase Arabidopsis thaliana RING Zinc Finger 1 (AtRZF1). To further investigate the function of other E4 Ub factors in osmotic stress, we isolated AtUAP2, an AtUAP1 homolog, which interacted with AtRZF1, using pull-down assay and bimolecular fluorescence complementation analysis. AtUAP2, a Ub-associated motif-containing protein, interacts with oligo-Ub5, -Ub6, and -Ub7 chains. The yeast functional complementation experiment revealed that AtUAP2 functions as an E4 Ub factor. In addition, AtUAP2 is localized in the cytoplasm, different from AtUAP1. The activity of AtUAP2 was relatively strongly induced in the leaf tissue of AtUAP2 promoter-ß-glucuronidase transgenic plants by abscisic acid, dehydration, and oxidative stress. atuap2 RNAi lines were more insensitive to osmotic stress condition than wild-type during the early growth of seedlings, whereas the AtUAP2-overexpressing line exhibited relatively more sensitive responses. Analyses of molecular and physiological experiments showed that AtUAP2 could negatively mediate the osmotic stress-induced signaling. Genetic studies showed that AtRZF1 mutation could suppress the dehydration-induced sensitive phenotype of the AtUAP2-overexpressing line, suggesting that AtRZF1 acts genetically downstream of AtUAP2 during osmotic stress. Taken together, our findings show that the AtRZF1-AtUAP2 complex may play important roles in the ubiquitination pathway, which controls the osmotic stress response in Arabidopsis.


Assuntos
Arabidopsis , Ubiquitina , Desidratação , Processamento de Proteína Pós-Traducional , Ubiquitinação
3.
J Agric Food Chem ; 72(8): 4237-4245, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38374637

RESUMO

Sclerotinia sclerotiorum is the causal agent of sclerotinia stem rot in over 400 plant species. In a previous study, the group III histidine kinase gene of S. sclerotiorum (Shk1) revealed its involvement in iprodione and fludioxonil sensitivity and osmotic stress. To further investigate the fungicide sensitivity associated with the high-osmolarity glycerol (HOG) pathway, we functionally characterized SsHog1, which is the downstream kinase of Shk1. To generate knockout mutants, split marker transformation combined with a newly developed repeated protoplasting method and CRISPR/Cas9 ribonucleoprotein (RNP) delivery approach were used. The pure SsHog1 and Shk1 knockout mutants showed reduced sensitivity to fungicides and increased sensitivity to osmotic stress. In addition, the SsHog1 knockout mutants demonstrated reduced virulence compared to Shk1 knockout mutants and wild-type. Our results indicate that the repeated protoplasting method and RNP approach can generate genetically pure homokaryotic mutants and SsHog1 is involved in osmotic adaptation, fungicide sensitivity, and virulence in S. sclerotiorum.


Assuntos
Ascomicetos , Sistemas CRISPR-Cas , Técnicas de Inativação de Genes , Histidina Quinase/genética , Ascomicetos/metabolismo
4.
FEMS Microbiol Lett ; 3702023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37475654

RESUMO

Cordyceps militaris, an entomopathogenic ascomycete, produces edible medicinal mushrooms known to have medicinal and therapeutic functions. To develop the genetic transformation system in C. militaris, green fluorescent protein (GFP) mutants of C. militaris were generated by PEG-mediated protoplast transformation. The CRISPR/Cas9 ribonucleoprotein (RNP) targeting the class III histidine kinase of C. militaris (CmHk1) was then delivered into protoplasts of C. militaris through the transformation system. Mutations induced by the RNP in selected mutants were detected: 1 nt deletion (6 mutants), 3 nt deletion with substitution of 1 nt (1 mutant), insertion of 85 nts (1 mutant), 41 nts (2 mutants), and 35 nts (5 mutants). An in vitro sensitivity assay of the mutants indicated that knockout of CmHk1 reduced sensitivity to two fungicides, iprodione and fludioxonil, but increased sensitivity to osmotic stresses compared to the wild type. Summing up, the CRISPR/Cas9 RNP delivery system was successfully developed, and our results revealed that CmHk1 was involved in the fungicide resistance and osmotic stress in C. militaris.


Assuntos
Sistemas CRISPR-Cas , Cordyceps , Cordyceps/genética , Ribonucleoproteínas/genética , Mutação
5.
Plants (Basel) ; 11(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36235431

RESUMO

Brassinosteroid (BR) is an important steroid hormone that regulates plant development, abscisic acid (ABA) signaling, and responses to abiotic stress. We previously demonstrated that BEH3 (BES1/BZR1 Homolog 3) of Arabidopsis thaliana regulates dehydration and ABA responses by mediating proline metabolism. Furthermore, BEH3 negatively regulates BR-mediated hypocotyl elongation in dark-grown seedlings. However, the roles of BEH3 ortholog genes in the osmotic stress response of plants have remained largely unknown. Here, GmBEH3L1 (Glycine max BEH3-Like 1), a soybean (G. max) ortholog of the BEH3 gene of A. thaliana, was isolated and functionally characterized. GmBEH3L1 is induced by ABA, dehydration, and drought conditions. The GmBEH3L1-overexpressing transgenic lines (GmBEH3L1-OE/beh3) with the beh3 mutant background have ABA- and dehydration-sensitive phenotypes during early seedling growth, implying that GmBEH3L1 is involved in both osmotic stress and ABA sensitivity as a negative regulator in A. thaliana. Consistent with these results, GmBEH3L1-OE/beh3 complemental lines exhibit decreased expression levels of ABA- or dehydration-inducible genes. Under darkness, GmBEH3L1-OE/beh3 complemental lines display a short hypocotyl length compared to the beh3 mutant, indicating that GmBEH3L1 is linked to BR signaling. Together, our data suggest that GmBEH3L1 participates negatively in ABA and dehydration responses through BR signaling.

6.
Plant Cell Physiol ; 62(6): 1044-1057, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34086919

RESUMO

Ubiquitination, one of the most frequently occurring post-translational modifications, is essential for regulating diverse cellular processes in plants during abiotic stress. The E3 ubiquitin (Ub) ligase Arabidopsis thaliana really interesting new gene (RING) zinc finger 1 (AtRZF1) mutation is known to enhance drought tolerance in A. thaliana seedlings. To further investigate the function of AtRZF1 in osmotic stress, we isolated Ub-associated protein 1 (AtUAP1) which interacts with AtRZF1 using a yeast two-hybrid system. AtUAP1, a Ub-associated motif containing protein, increased the amount of Ub-conjugated AtRZF1. Moreover, AtUAP1 RNA interference lines were more tolerant to osmotic stress than wild type, whereas AtUAP1-overexpressing (OX) transgenic lines showed sensitive responses, including cotyledon greening, water loss, proline accumulation and changes in stress-related genes expression, indicating that AtUAP1 could negatively regulate dehydration-mediated signaling. In addition, AtUAP1-green fluorescent protein fusion protein was observed in the nuclei of root cells of transgenic seedlings. Genetic studies showed that the AtRZF1 mutation could rescue the sensitive phenotype of AtUAP1-OX lines in response to osmotic stress, suggesting that AtRZF1 was epistatic to AtUAP1 in dehydration signaling. Taken together, our findings describe a new component in the AtRZF1 ubiquitination pathway which controls the dehydration response in A. thaliana.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Desidratação , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Sítios de Ligação , Regulação da Expressão Gênica de Plantas , Pressão Osmótica , Plantas Geneticamente Modificadas , Poliubiquitina/metabolismo , Domínios Proteicos , Mapas de Interação de Proteínas , Técnicas do Sistema de Duplo-Híbrido , Ubiquitinação
7.
J Exp Bot ; 72(2): 636-653, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33529338

RESUMO

Proline (Pro) metabolism plays important roles in protein synthesis, redox balance, and abiotic stress response. However, it is not known if cross-talk occurs between proline and brassinosteroid (BR) signaling pathways. Here, an Arabidopsis intergenic enhancer double mutant, namely proline content alterative 41 (pca41), was generated by inserting a T-DNA tag in the Arabidopsis thaliana ring zinc finger 1 (atrzf1 ) mutant background. pca41 had a T-DNA inserted at the site of the gene encoding BES1/BZR1 Homolog 3 (BEH3). pca41 has a drought-insensitive phenotype that is stronger than atrzf1 under osmotic stress, including high Pro accumulation and decreased amounts of reactive oxygen species. Analysis of physiological, genetic, and molecular networks revealed that negative regulation of BEH3 during abiotic stress was linked to the BR signaling pathway. Our data also suggest that AtRZF1, an E3 ubiquitin ligase, might control osmotic stress, abscisic acid, and BR responses in a BEH3-dependent manner. Under darkness, pca41 displays a long hypocotyl phenotype, which is similar to atrzf1 and beh3, suggesting that BEH3 acts in the same pathway as AtRZF1. Overexpression of BEH3 results in an osmotic stress-sensitive phenotype, which is reversed by exogenous BR application. Taken together, our results indicate that AtRZF1 and BEH3 may play important roles in the osmotic stress response via ubiquitination and BR signaling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Pressão Osmótica , Plantas Geneticamente Modificadas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
8.
Anal Chim Acta ; 1113: 1-8, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32340664

RESUMO

Polygalacturonase (PG) activity in plants can serve as an important index for plant disease. However, the conventional method to detect PG activity is a complex process and requires a skilled technician and expensive analytical equipment. In this study, a paper-based colorimetric sensor was developed based on the principle of the ruthenium red (RR) dye method for easy and simple measurement of PG activity. The proposed paper-based sensor has a three-layer structure for detection of PG activity in samples. The sensor sensitivity was enhanced by optimizing the pH of the sodium acetate buffer used in polygalacturonic acid (PGA)-RR complex formation and the reaction temperature for PG and the PGA-RR complex. Further, for quantitative analysis of PG activity, Delta RGB analysis was conducted to detect color changes in the sensing window of the sensor. Results presented that the linear measurement range of the paper sensor was 0.02-0.1 unit with the limit of detection of 0.02 unit, which showed a similar detection range, but a lower detection limit, compared to the spectrophotometry. Furthermore, PG activity based on culture condition was measured using samples from Sclerotium cepivorum to verify the potential application of the developed paper-based sensor in the field. The measured activity showed no statistically significant difference from the values obtained from the spectrophotometry at 95% confidence level. Therefore, the paper-based colorimetric sensor can be used to predict plant diseases in Allium crops during the stage of pathogen invasion, potentially contributing to the improvement of crop production.


Assuntos
Papel , Doenças das Plantas/virologia , Poligalacturonase/análise , Ascomicetos/enzimologia , Colorimetria/instrumentação , Colorimetria/métodos , Limite de Detecção
9.
Anal Chim Acta ; 1105: 169-177, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32138916

RESUMO

Free proline, termed proline, is a biomarker used for diagnosing drought stress in plants. A previously developed proline-ninhydrin reaction-based paper sensor could quickly and easily detect proline, but it was limited by low sensitivity. In this study, we developed an enclosed multilayer paper-based microfluidic sensor with high sensitivity for the quantitative detection of proline in plants. The multilayer paper-based sensor was manufactured using simple wax printing and origami methods, and contained an internal mixing channel to allow good mixing of the proline with ninhydrin, increasing the proline-ninhydrin reactivity and providing accurate and sensitive proline detection. By preloading ninhydrin onto the sample loading area, uniform coloration of the sensing window was achieved, allowing quantitative analysis of various proline concentrations using a constant reaction time. Only the sensing window and sample loading area were exposed to limit sample evaporation and contamination from the external environment. The LOD of the fabricated sensor was 23 µM, which is approximately 29-fold lower than that of the previously proposed paper sensor (657 µM). Samples were extracted from A. thaliana plants subjected to drought stress for proline detection. The proline concentrations measured using the developed paper sensor and a spectrophotometric method were not statistically significant at a confidence level of 95%. Therefore, the developed sensor can be applied to measure proline concentrations precisely in the field with a low detection limit. The developed paper-based sensor can be used to detect the early stages of drought in plants and thus improve crop productivity.


Assuntos
Arabidopsis/química , Indicadores e Reagentes/química , Técnicas Analíticas Microfluídicas , Ninidrina/química , Papel , Prolina/análise , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
10.
Plant Physiol Biochem ; 143: 320-328, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31539761

RESUMO

Sulfate metabolism and glucose (Glc) signaling are important processes required for plant growth, development, and environmental responses. However, whether sulfate metabolism is involved in Arabidopsis response to Glc stress remains largely unclear. Recently, we have found that proline content alterative 17 (pca17) is a double-mutant line in which both AtRZF1 (for Arabidopsis thaliana Ring Zinc Finger 1) and AHL (for Arabidopsis Halotolerance 2-like) genes are mutated. It was found that insensitive response of atrzf1 mutant to abiotic stresses was suppressed in pca17 mutant by regulating proline metabolism. Here, pca17 appeared to have sensitive response to Glc treatment by reducing cysteine (Cys) and adenosine monophosphate (AMP) contents in sulfate metabolism. Under Glc treatment, transcript levels of sulfate metabolism-related genes were significantly lower in pca17 than those in wild-type (WT) and atrzf1. Furthermore, AHL-overexpressing transgenic lines displayed more insensitive phenotypes than WT during Glc condition while ahl RNAi lines exhibited sensitive responses based on several parameters, including seed germination rate, cotyledon greening percentage, root elongation, and fresh weight. Interestingly, the pca17 phenotype in applied AMP with Glc treatment was similar to atrzf1 phenotype. Taken together, our results indicate that AHL is involved in Glc response by modulating sulfate metabolism in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Prolina/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Glucose/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Interferência de RNA , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Sulfatos/metabolismo
11.
Rev Sci Instrum ; 90(4): 045002, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31042988

RESUMO

We developed and characterized a paper-based microfluidic sensor for the on-site diagnosis of drought stress in plants. Proline was used as a biomarker for analyzing drought stress, which was extracted by a colorimetric method using the proline-ninhydrin reaction. Paper was used as the main sensor material for the on-site detection of proline as it is easily transportable and cost-effective. The paper-based sensor was fabricated using wax-printing and origami methods, and the sensor was precoated with ninhydrin to allow for easy and convenient on-site use. Furthermore, a sample-to-ninhydrin ratio of 1:2 was found to confer optimal sensitivity to the drought diagnosis sensor. The concentration of proline in a sample was quantified by red-green-blue analysis to determine the change in green color intensity levels in response to distinct proline concentrations, which were detected by the sensor. The limit of detection of proline using the devised sensor was 657 µM, and the green color intensity level decreased with increasing proline concentration. In addition, the sensor was validated in an experimental drought stress model with Arabidopsis and subjected to drought stress for 21 days, and the amount of proline detected was 10 mM. The devised paper-based microfluidic sensor highlights the possibility of the on-site evaluation of drought stress in plants with potential to be utilized in various agricultural areas in the future.


Assuntos
Arabidopsis/química , Secas , Técnicas Analíticas Microfluídicas/instrumentação , Prolina/análise , Estresse Fisiológico , Arabidopsis/metabolismo , Desidratação/diagnóstico , Desidratação/metabolismo , Desenho de Equipamento , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/métodos , Ninidrina , Papel , Estresse Fisiológico/fisiologia
12.
Plant Mol Biol ; 99(4-5): 363-377, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30637572

RESUMO

KEY MESSAGE: Destruction of PAP phosphatase AHL suppresses atrzf1 phenotype in abiotic stress responses. AHL plays an intermediate role in the regulation of proline accumulation by PAP nucleotidase. Proline (Pro) metabolism is important for environmental responses, plant development, and growth. However, the role of Pro in abiotic stress process is unclear. Using atrzf1 (Arabidopsis thaliana ring zinc finger 1) mutant as a parental line for T-DNA tagging mutagenesis, we identified a suppressor mutant designated as proline content alterative 17 (pca17) that suppressed insensitivity of atrzf1 to abiotic stresses during early seedling growth. Pro content of pca17 was lower than that in both wild type (WT) and atrzf1 while complementary lines were less sensitive to abscisic acid (ABA) and abiotic stresses compared to WT. Thermal Asymmetric Interlaced (TAIL)-PCR of pca17 showed that T-DNA was inserted at site of At5g54390 (AHL for Arabidopsis Halotolerance 2-like) encoding 3'-phosphoadenosine-5'-phosphate (PAP) phosphatase. Under drought stress condition, products of sulfate metabolism such as PAP and adenosine monophosphate were significantly lower in pca17 than those in WT and atrzf1. Furthermore, pca17 showed significantly higher levels of several important drought parameters including malondialdehyde, ion leakage, and water loss than WT and atrzf1. Fluorescence signal of green fluorescent protein (GFP)-tagged AHL was quite strong in nuclei of the root and guard cells of transgenic seedlings. Additionally, AHL promoter-ß-glucuronidase (GUS) construct revealed substantial gene expression in vasculature tissues and pollen. Collectively, these findings demonstrate that pca17 acts as a dominant suppressor mutant of atrzf1 in abiotic stress response by modulating proline and sulfate metabolism.


Assuntos
Difosfato de Adenosina/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Estresse Fisiológico , Ácido Abscísico/farmacologia , Monofosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Proteínas de Fluorescência Verde , Peróxido de Hidrogênio/farmacologia , Malondialdeído/metabolismo , Manitol/farmacologia , Mutação , Plantas Geneticamente Modificadas , Prolina/metabolismo , Plântula , Alinhamento de Sequência , Sulfatos/metabolismo
13.
Plant Physiol Biochem ; 136: 34-42, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30639920

RESUMO

Transduction of glucose (Glc) signaling is critical for plant development, metabolism, and stress responses. However, identifying initial Glc sensing and response stimulating mechanisms in plants has been difficult due to dual functions of glucose as energy sources and signaling component. A basic Helix-Loop-Helix 104 (bHLH104) protein is a homolog of bHLH34 previously isolated from Arabidopsis that functions as a transcriptional activator of Glc and abscisic acid (ABA) responses. In this study, we characterized bHLH104 as a transcription factor that binds to the regulatory region of Arabidopsis Plasma membrane Glc-responsive Regulator (AtPGR) gene. The bHLH104 binds to 5'-AANA-3' element of the promoter region of AtPGR in vitro and represses beta-glucuronidase (GUS) activity in AtPGR promoter-GUS transgenic plants. Genetic approaches show that bHLH104 positively regulates Glc and abscisic acid (ABA) response. These results suggest that bHLH104 is involved in Glc- and ABA-mediated signaling pathway. Taken together, these findings provide evidence that bHLH104 is an important transcription regulator in plant-sensitivity to Glc and ABA signaling.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Glucose/metabolismo , Transdução de Sinais , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes
14.
Anal Biochem ; 556: 57-62, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29944872

RESUMO

We developed a high-throughput technique for highly sensitive measurement of trace amounts of proline, an indicator of drought stress in plants, using an optimized proline-ninhydrin reaction. In order to do this, proline detection time was minimized by omitting phosphoric acid from the ninhydrin reagent. Chromophore extraction using toluene was also omitted, thus lowering the risks to environment and human health, and allowing the use of readily available polystyrene plates. Proline detection sensitivity was assessed based on the concentration of sulfosalicylic acid in the solution, which indicated that 1% sulfosalicylic acid yielded the best sensitivity and linearity. These findings were applied to a multiwell plate-based multiplex analysis using a dry oven for the simultaneous analysis of a large number of drought-stressed plant samples with trace amounts of proline. The results showed that proline could be effectively detected in plants grown in soil with water content under 5%, demonstrating its potential for diagnosing drought early. The proposed multiwell plate-based multiplex assay is expected to be useful in manifold agricultural applications.


Assuntos
Arabidopsis/metabolismo , Ninidrina/química , Folhas de Planta/metabolismo , Prolina , Prolina/análise , Prolina/metabolismo , Estresse Fisiológico , Água
15.
Biochem Biophys Res Commun ; 494(3-4): 499-503, 2017 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-29066352

RESUMO

Proline (Pro) metabolism in plants is involved in various cellular processes mediated during abiotic stress. However, the Pro-regulatory mechanisms are unclear. We used a suppressor mutation technique to isolate novel genes involved in the regulation of Pro metabolism in Arabidopsis. Using atrzf1 as a parental plant for T-DNA tagging mutagenesis, we identified a suppressor mutant, termed proline content alterative 21 (pca21), that displayed reduced Pro contents compared with the atrzf1 under osmotic stress conditions. Genomic Thermal Asymmetric Interlaced (TAIL)-PCR revealed pca21 harbored an inserted T-DNA in the region of At2g36620 that encodes Ribosomal Protein L24A. In general, the pca21 mutant partially suppressed the insensitivity of atrzf1 to osmotic stress and abscisic acid during seed germination and early seedling stage. Additionally, the pca21 mutant had increased MDA content and lower expression of several Pro biosynthesis-related genes than the atrzf1 mutant during drought condition. These results suggest that pca21 acts as partial suppressor of atrzf1 in the osmotic stress response through the Pro-mediated pathway.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Secas , Prolina/metabolismo , Proteínas Ribossômicas/metabolismo , Estresse Fisiológico/fisiologia , Regulação para Baixo/fisiologia , Mutação/genética , Osmose/fisiologia , Pressão Osmótica
16.
J Exp Bot ; 68(7): 1797-1809, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369480

RESUMO

Proline metabolism is important for environmental responses, plant growth, and development. However, its precise roles in plant abiotic stress tolerance are not well understood. Mutants are valuable for the identification of new genes and for elucidating their roles in physiological mechanisms. We applied a suppressor mutation approach to identify novel genes involved in the regulation of proline metabolism in Arabidopsis. Using the atrzf1 (Arabidopsis thaliana ring zinc finger 1) mutant as a parental line for activation tagging mutagenesis, we selected several mutants with suppressed induction of proline accumulation under dehydration conditions. One of the selected mutants [proline content alterative 22 (pca22)] appeared to have reduced proline contents compared with the atrzf1 mutant under drought stress. Generally, pca22 mutant plants displayed suppressed atrzf1 insensitivity to dehydration and abscisic acid during early seedling growth. Additionally, the pca22 mutant exhibited shorter pollen tube length than wild-type (WT) and atrzf1 plants. Furthermore, PCA22-overexpressing plants were more sensitive to dehydration stress than the WT and RNAi lines. Green fluorescent protein-tagged PCA22 was localized to the cytoplasm of transgenic Arabidopsis cells. Collectively, these results suggest that pca22 acts as dominant suppressor mutant of atrzf1 in the abiotic stress response.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Peptídeos e Proteínas de Sinalização Intracelular/genética , Prolina/metabolismo , Estresse Fisiológico , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Filogenia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Alinhamento de Sequência
17.
Plant Physiol Biochem ; 104: 155-64, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27031427

RESUMO

Biochemical, genetic, physiological, and molecular research in plants has demonstrated a central role of glucose (Glc) in the control of plant growth, metabolism, and development, and has revealed networks that integrate light, stresses, nutrients, and hormone signaling. Previous studies have reported that AtPGR protein as potential candidates for Glc signaling protein. In the present study, we characterized transcription factors that bind to the upstream region of the AtPGR gene isolated using the yeast one-hybrid screening with an Arabidopsis cDNA library. One of the selected genes (AtSTKL) appeared to confer elevated sensitivity to Glc response. Overexpression of AtSTKLs (AtSTKL1 and AtSTKL2) increased the sensitivity to Glc during the post-germination stages. In contrast, atstkl1 and atstkl2 antisense lines displayed reduced sensitivity to high Glc concentration during the early seedling stage. Furthermore, we showed that the two AtSTKLs bind to the 5'-GCCT-3' element of the upstream promoter region of the AtPGR gene in vitro and repress the beta-glucuronidase (GUS) activity in AtPGR promoter-GUS (P999-GUS) transgenic plants. Green fluorescent protein (GFP)-tagged AtSTKLs were localized in the nuclei of transgenic Arabidopsis cells. Collectively, these results suggest that AtSTKL1 and AtSTKL2 function both as repressors of AtPGR transcription and as novel transcription factors in the Glc signaling pathway.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Glucose/farmacologia , Proteínas de Membrana/genética , Proteínas Repressoras/genética , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Membrana Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Cotilédone/efeitos dos fármacos , Cotilédone/genética , DNA de Plantas/genética , Ensaio de Desvio de Mobilidade Eletroforética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Glucuronidase/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Filogenia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Ligação Proteica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Alinhamento de Sequência , Deleção de Sequência , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética
18.
Biochem Biophys Res Commun ; 463(1-2): 24-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25983319

RESUMO

Abscisic acid (ABA) receptors in plants are thought to be involved in various cellular processes mediated by signal transduction pathways. There are about 14 ABA receptors in Arabidopsis, but only a few have been studied. In this study, we investigated the effect of the disruption and overexpression of an ABA receptor gene, PYL8 (At5g53160) on plant responses to glucose (Glc) and dark-induced leaf senescence. Expression of PYL8 was strongly reduced by Glc treatment. Overexpression of PYL8 in Arabidopsis resulted in significantly reduced seed germination and cotyledon greening under high Glc conditions, while RNAi transgenic lines were more insensitive to Glc stress. Activities of two Glc-responsive genes, Arabidopsis thaliana Hexokinase 1 (AtHXK1) and ABA insensitive 5 (ABI5) were higher in PYL8-overexpressing plants than in the wild-type (WT) plants after Glc treatment, whereas the transcript levels of these genes in RNAi plants decreased. Furthermore, PYL8-overexpressing plants displayed increased yellowing, membrane ion leakage, and reduced chlorophyll content due to dark-induced senescence, and exhibited stronger expression of a group of senescence-inducible genes than did WT. The data show that PYL8 plays essential roles in responses to both Glc and dark-induced senescence in A. thaliana.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glucose/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Escuridão , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Hexoquinase/genética , Naftalenos/toxicidade , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Plantas Geneticamente Modificadas , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Transdução de Sinais , Estresse Fisiológico , Sulfonamidas/toxicidade
19.
J Integr Plant Biol ; 57(3): 313-24, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25073793

RESUMO

The precise roles of the B-box zinc finger family of transcription factors in plant stress are poorly understood. Functional analysis was performed on AtCOL4, an Arabidopsis thaliana L. CONSTANS-like 4 protein that is a putative novel transcription factor, and which contains a predicted transcriptional activation domain. Analyses of an AtCOL4 promoter-ß-glucuronidase (GUS) construct revealed substantial GUS activity in whole seedlings. The expression of AtCOL4 was strongly induced by abscisic acid (ABA), salt, and osmotic stress. Mutation in atcol4 resulted in increased sensitivity to ABA and salt stress during seed germination and the cotyledon greening process. In contrast, AtCOL4-overexpressing plants were less sensitive to ABA and salt stress compared to the wild type. Interestingly, in the presence of ABA or salt stress, the transcript levels of other ABA biosynthesis and stress-related genes were enhanced induction in AtCOL4-overexpressing and WT plants, rather than in the atcol4 mutant. Thus, AtCOL4 is involved in ABA and salt stress response through the ABA-dependent signaling pathway. Taken together, these findings provide compelling evidence that AtCOL4 is an important regulator for plant tolerance to abiotic stress.


Assuntos
Ácido Abscísico/farmacologia , Adaptação Fisiológica , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Germinação/efeitos dos fármacos , Germinação/genética , Glucuronidase/metabolismo , Manitol/farmacologia , Fenótipo , Plantas Geneticamente Modificadas , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos , Salinidade , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética
20.
Chonnam Med J ; 51(3): 129-34, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26730364

RESUMO

Surgical decompression for cervical radiculopathy includes anterior cervical discectomy and fusion, anterior or posterior cervical foraminotomy, and cervical arthroplasty after decompression. The aim of this study was to evaluate the usefulness of a CO2 laser in posterior-approach surgery for unilateral cervical radiculopathy. From January 2006 to December 2008, 12 consecutive patients with unilateral cervical radiculopathy from either foraminal stenosis or disc herniation, which was confirmed with imaging studies, underwent posterior foraminotomy and discectomy with the use of a microscope and CO2 laser. For annulotomy and discectomy, we used about 300 joules of CO2 laser energy. Magnetic resonance imaging (MRI) was used to evaluate the extent of disc removal or foraminal decompression. Clinical outcome was evaluated by using visual analogue scale scores for radicular pain and Odom's criteria. For evaluation of spinal stability, cervical flexion and extension radiographs were obtained. Single-level foraminotomy was performed in 10 patients and two-level foraminotomies were performed in 2 patients. Preoperative radicular symptoms were improved immediately after surgery in all patients. No surgery-related complications developed in our cases. Postoperative MRI demonstrated effective decompression of ventral lesions and widened foraminal spaces in all cases. There was no development of cervical instability during the follow-up period. Posterior foraminotomy and discectomy using a microscope and CO2 laser is an effective surgical tool for unilateral cervical radiculopathy caused by lateral or foraminal disc herniations or spondylotic stenosis. Long-term follow-up with radiographs showed no significant kyphotic changes or spinal instability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA