Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 118(6): 2169-2187, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38558472

RESUMO

Genome-wide association studies (GWAS) are an effective approach to identify new specialized metabolites and the genes involved in their biosynthesis and regulation. In this study, GWAS of Arabidopsis thaliana soluble leaf and stem metabolites identified alleles of an uncharacterized BAHD-family acyltransferase (AT5G57840) associated with natural variation in three structurally related metabolites. These metabolites were esters of glucuronosylglycerol, with one metabolite containing phenylacetic acid as the acyl component of the ester. Knockout and overexpression of AT5G57840 in Arabidopsis and heterologous overexpression in Nicotiana benthamiana and Escherichia coli demonstrated that it is capable of utilizing phenylacetyl-CoA as an acyl donor and glucuronosylglycerol as an acyl acceptor. We, thus, named the protein Glucuronosylglycerol Ester Synthase (GGES). Additionally, phenylacetyl glucuronosylglycerol increased in Arabidopsis CYP79A2 mutants that overproduce phenylacetic acid and was lost in knockout mutants of UDP-sulfoquinovosyl: diacylglycerol sulfoquinovosyl transferase, an enzyme required for glucuronosylglycerol biosynthesis and associated with glycerolipid metabolism under phosphate-starvation stress. GGES is a member of a well-supported clade of BAHD family acyltransferases that arose by duplication and neofunctionalized during the evolution of the Brassicales within a larger clade that includes HCT as well as enzymes that synthesize other plant-specialized metabolites. Together, this work extends our understanding of the catalytic diversity of BAHD acyltransferases and uncovers a pathway that involves contributions from both phenylalanine and lipid metabolism.


Assuntos
Aciltransferases , Proteínas de Arabidopsis , Arabidopsis , Estudo de Associação Genômica Ampla , Fenilacetatos , Arabidopsis/genética , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Fenilacetatos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
3.
Nat Commun ; 14(1): 597, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737607

RESUMO

Plants contain rapidly evolving specialized enzymes that support the biosynthesis of functionally diverse natural products. In coumarin biosynthesis, a BAHD acyltransferase-family enzyme COSY was recently discovered to accelerate coumarin formation as the only known BAHD enzyme to catalyze an intramolecular acyl transfer reaction. Here we investigate the structural and mechanistic basis for COSY's coumarin synthase activity. Our structural analyses reveal an unconventional active-site configuration adapted to COSY's specialized activity. Through mutagenesis studies and deuterium exchange experiments, we identify a unique proton exchange mechanism at the α-carbon of the o-hydroxylated trans-hydroxycinnamoyl-CoA substrates during the catalytic cycle of COSY. Quantum mechanical cluster modeling and molecular dynamics further support this key mechanism for lowering the activation energy of the rate-limiting trans-to-cis isomerization step in coumarin production. This study unveils an unconventional catalytic mechanism mediated by a BAHD-family enzyme, and sheds light on COSY's evolutionary origin and its recruitment to coumarin biosynthesis in eudicots.


Assuntos
Plantas , Prótons , Isomerismo , Plantas/metabolismo , Aciltransferases/metabolismo , Cumarínicos
4.
Nat Commun ; 14(1): 876, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797319

RESUMO

Grass pea (Lathyrus sativus L.) is a rich source of protein cultivated as an insurance crop in Ethiopia, Eritrea, India, Bangladesh, and Nepal. Its resilience to both drought and flooding makes it a promising crop for ensuring food security in a changing climate. The lack of genetic resources and the crop's association with the disease neurolathyrism have limited the cultivation of grass pea. Here, we present an annotated, long read-based assembly of the 6.5 Gbp L. sativus genome. Using this genome sequence, we have elucidated the biosynthetic pathway leading to the formation of the neurotoxin, ß-L-oxalyl-2,3-diaminopropionic acid (ß-L-ODAP). The final reaction of the pathway depends on an interaction between L. sativus acyl-activating enzyme 3 (LsAAE3) and a BAHD-acyltransferase (LsBOS) that form a metabolon activated by CoA to produce ß-L-ODAP. This provides valuable insight into the best approaches for developing varieties which produce substantially less toxin.


Assuntos
Diamino Aminoácidos , Lathyrus , Lathyrus/genética , Lathyrus/metabolismo , Diamino Aminoácidos/metabolismo , Neurotoxinas/metabolismo , Genômica
5.
Proc Natl Acad Sci U S A ; 119(33): e2205848119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939674

RESUMO

Tetrahydropapaverine (THP) and papaverine are plant natural products with clinically significant roles. THP is a precursor in the production of the drugs atracurium and cisatracurium, and papaverine is used as an antispasmodic during vascular surgery. In recent years, metabolic engineering advances have enabled the production of natural products through heterologous expression of pathway enzymes in yeast. Heterologous biosynthesis of THP and papaverine could play a role in ensuring a stable supply of these clinically significant products. Biosynthesis of THP and papaverine has not been achieved to date, in part because multiple pathway enzymes have not been elucidated. Here, we describe the development of an engineered yeast strain for de novo biosynthesis of THP. The production of THP is achieved through heterologous expression of two enzyme variants with activity on nonnative substrates. Through protein engineering, we developed a variant of N-methylcoclaurine hydroxylase with activity on coclaurine, enabling de novo norreticuline biosynthesis. Similarly, we developed a variant of scoulerine 9-O-methyltransferase capable of O-methylating 1-benzylisoquinoline alkaloids at the 3' position, enabling de novo THP biosynthesis. Flux through the heterologous pathway was improved by knocking out yeast multidrug resistance transporters and optimization of media conditions. Overall, strain engineering increased the concentration of biosynthesized THP 600-fold to 121 µg/L. Finally, we demonstrate a strategy for papaverine semisynthesis using hydrogen peroxide as an oxidizing agent. Through optimizing pH, temperature, reaction time, and oxidizing agent concentration, we demonstrated the ability to produce semisynthesized papaverine through oxidation of biosynthesized THP.


Assuntos
Produtos Biológicos , Papaverina , Engenharia de Proteínas , Saccharomyces cerevisiae , Produtos Biológicos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Peróxido de Hidrogênio/química , Oxidantes/química , Papaverina/biossíntese , Proteínas de Plantas/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética
6.
Nat Chem Biol ; 18(7): 762-773, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35668191

RESUMO

Mucins are large gel-forming polymers inside the mucus barrier that inhibit the yeast-to-hyphal transition of Candida albicans, a key virulence trait of this important human fungal pathogen. However, the molecular motifs in mucins that inhibit filamentation remain unclear despite their potential for therapeutic interventions. Here, we determined that mucins display an abundance of virulence-attenuating molecules in the form of mucin O-glycans. We isolated and cataloged >100 mucin O-glycans from three major mucosal surfaces and established that they suppress filamentation and related phenotypes relevant to infection, including surface adhesion, biofilm formation and cross-kingdom competition between C. albicans and the bacterium Pseudomonas aeruginosa. Using synthetic O-glycans, we identified three structures (core 1, core 1 + fucose and core 2 + galactose) that are sufficient to inhibit filamentation with potency comparable to the complex O-glycan pool. Overall, this work identifies mucin O-glycans as host molecules with untapped therapeutic potential to manage fungal pathogens.


Assuntos
Candida albicans , Mucinas , Fucose , Mucinas/química , Polissacarídeos/química , Virulência
7.
Nat Commun ; 11(1): 1867, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32313070

RESUMO

Plant halogenated natural products are rare and harbor various interesting bioactivities, yet the biochemical basis for the involved halogenation chemistry is unknown. While a handful of Fe(II)- and 2-oxoglutarate-dependent halogenases (2ODHs) have been found to catalyze regioselective halogenation of unactivated C-H bonds in bacteria, they remain uncharacterized in the plant kingdom. Here, we report the discovery of dechloroacutumine halogenase (DAH) from Menispermaceae plants known to produce the tetracyclic chloroalkaloid (-)-acutumine. DAH is a 2ODH of plant origin and catalyzes the terminal chlorination step in the biosynthesis of (-)-acutumine. Phylogenetic analyses reveal that DAH evolved independently in Menispermaceae plants and in bacteria, illustrating an exemplary case of parallel evolution in specialized metabolism across domains of life. We show that at the presence of azide anion, DAH also exhibits promiscuous azidation activity against dechloroacutumine. This study opens avenues for expanding plant chemodiversity through halogenation and azidation biochemistry.


Assuntos
Alcaloides/biossíntese , Compostos Ferrosos/metabolismo , Hidrolases/metabolismo , Ácidos Cetoglutáricos/metabolismo , Menispermaceae/metabolismo , Compostos de Espiro/metabolismo , Alcaloides/química , Alcaloides/genética , Bactérias/metabolismo , Biocatálise , Genes de Plantas/genética , Halogenação , Menispermaceae/embriologia , Menispermaceae/genética , Mutagênese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes , Metabolismo Secundário/genética , Alinhamento de Sequência , Compostos de Espiro/química , Transcriptoma
8.
BMC Microbiol ; 19(1): 214, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488062

RESUMO

BACKGROUND: Characterization of the skin and wound microbiome is of high biomedical interest, but is hampered by the low biomass of typical samples. While sample preparation from other microbiomes (e.g., gut) has been the subject of extensive optimization, procedures for skin and wound microbiomes have received relatively little attention. Here we describe an improved method for obtaining both phage and microbial DNA from a single skin or wound swab, characterize the yield of DNA in model samples, and demonstrate the utility of this approach with samples collected from a wound clinic. RESULTS: We find a substantial improvement when processing wound samples in particular; while only one-quarter of wound samples processed by a traditional method yielded sufficient DNA for downstream analysis, all samples processed using the improved method yielded sufficient DNA. Moreover, for both skin and wound samples, community analysis and viral reads obtained through deep sequencing of clinical swab samples showed significant improvement with the use of the improved method. CONCLUSION: Use of this method may increase the efficiency and data quality of microbiome studies from low-biomass samples.


Assuntos
Microbiota/genética , Pele/microbiologia , Manejo de Espécimes/métodos , Ferimentos e Lesões/microbiologia , Bactérias/genética , Bacteriófagos/genética , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , DNA Viral/genética , DNA Viral/isolamento & purificação , Humanos , Limite de Detecção , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Pele/patologia , Ferimentos e Lesões/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA