Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(2): e1011535, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38335237

RESUMO

A better mechanistic understanding of virus-host dependencies can help reveal vulnerabilities and identify opportunities for therapeutic intervention. Of particular interest are essential interactions that enable production of viral proteins, as those could target an early step in the virus lifecycle. Here, we use subcellular proteomics, ribosome profiling analyses and reporter assays to detect changes in protein synthesis dynamics during SARS-CoV-2 (CoV2) infection. We identify specific translation factors and molecular chaperones that are used by CoV2 to promote the synthesis and maturation of its own proteins. These can be targeted to inhibit infection, without major toxicity to the host. We also find that CoV2 non-structural protein 1 (Nsp1) cooperates with initiation factors EIF1 and 1A to selectively enhance translation of viral RNA. When EIF1/1A are depleted, more ribosomes initiate translation from a conserved upstream CUG start codon found in all genomic and subgenomic viral RNAs. This results in higher translation of an upstream open reading frame (uORF1) and lower translation of the main ORF, altering the stoichiometry of viral proteins and attenuating infection. Replacing the upstream CUG with AUG strongly inhibits translation of the main ORF independently of Nsp1, EIF1, or EIF1A. Taken together, our work describes multiple dependencies of CoV2 on host biosynthetic networks and proposes a model for dosage control of viral proteins through Nsp1-mediated control of translation start site selection.


Assuntos
COVID-19 , RNA Viral , Humanos , RNA Viral/genética , SARS-CoV-2/genética , COVID-19/genética , Fatores de Iniciação de Peptídeos , Proteínas Virais
2.
Sci Total Environ ; 850: 158100, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35987222

RESUMO

Fluorine (F)-free firefighting foams will be replacing per- and polyfluoroalkyl substances (PFAS)-containing aqueous film-forming foams (AFFFs) at U.S. military installations imminently, yet the environmental impacts of F-free foams are largely unknown. Ecotoxicity assessment of F-free foams is urgently needed to avoid replacement regret. In this study, we comparatively assessed phytotoxicity of six F-free formulations and one current short-chain fluorinated AFFF in terrestrial plant Brassica rapa. Five of six F-free formulations exerted higher toxicity than the short-chain AFFF to the growth and reproduction of B. rapa, with 8-51 times and > 10 times lower EC50 values, respectively. Nontargeted analysis indicated the occurrence of transformation products of the test formulations in the above-ground plant tissues. In agreement with their phytotoxicity, the five highly toxic F-free formulations generated more transformation products with higher peak intensities in plant tissues than the two weakly toxic formulations. The most abundant transformation products detected in plant extracts were suspect transformation products derived from diethylene glycol monobutyl ether, a common ingredient of the five toxic formulations. This study provides ecotoxicological data that, combined with data from all related ongoing research, should be used in decision making regarding recommendations for manufacturing and use of candidate F-free foams.


Assuntos
Brassica rapa , Fluorocarbonos , Poluentes Químicos da Água , Fluoretos , Flúor , Fluorocarbonos/análise , Extratos Vegetais , Água , Poluentes Químicos da Água/análise
3.
Nature ; 583(7818): 839-844, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32699414

RESUMO

Mutations in the leptin gene (ob) result in a metabolic disorder that includes severe obesity1, and defects in thermogenesis2 and lipolysis3, both of which are adipose tissue functions regulated by the sympathetic nervous system. However, the basis of these sympathetic-associated abnormalities remains unclear. Furthermore, chronic leptin administration reverses these abnormalities in adipose tissue, but the underlying mechanism remains to be discovered. Here we report that ob/ob mice, as well as leptin-resistant diet-induced obese mice, show significant reductions of sympathetic innervation of subcutaneous white and brown adipose tissue. Chronic leptin treatment of ob/ob mice restores adipose tissue sympathetic innervation, which in turn is necessary to correct the associated functional defects. The effects of leptin on innervation are mediated via agouti-related peptide and pro-opiomelanocortin neurons in the hypothalamic arcuate nucleus. Deletion of the gene encoding the leptin receptor in either population leads to reduced innervation in fat. These agouti-related peptide and pro-opiomelanocortin neurons act via brain-derived neurotropic factor-expressing neurons in the paraventricular nucleus of the hypothalamus (BDNFPVH). Deletion of BDNFPVH blunts the effects of leptin on innervation. These data show that leptin signalling regulates the plasticity of sympathetic architecture of adipose tissue via a top-down neural pathway that is crucial for energy homeostasis.


Assuntos
Tecido Adiposo/inervação , Tecido Adiposo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Leptina/metabolismo , Sistema Nervoso Simpático/fisiologia , Proteína Relacionada com Agouti/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/metabolismo , Leptina/deficiência , Lipólise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Transdução de Sinais , Gordura Subcutânea/inervação , Gordura Subcutânea/metabolismo , Termogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA