Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 352
Filtrar
1.
J Breast Cancer ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39344410

RESUMO

PURPOSE: A widely distributed cell cycle inhibitor, p27, regulates cyclin-dependent kinase-cyclin complexes. Although the prognostic value of p27 has been established for various types of carcinomas, its role in luminal breast cancer remains poorly understood. This study aimed to explore the functional enrichment of p27 and identify potential drug targets in patients with luminal-type breast cancer. METHODS: Clinicopathological data were collected from 868 patients with luminal-type breast cancer. Additionally, publicly available data from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset (1,500 patients) and the Gene Expression Omnibus database (855 patients) were included in the analysis. Immunohistochemical staining for p27, differential gene expression analysis, disease ontology analysis, survival prediction modeling using machine learning (ML), and in vitro drug screening were also performed. RESULTS: Low p27 expression correlated with younger age, advanced tumor stage, estrogen receptor/progesterone receptor negativity, decreased cluster of differentiation 8+ T cell count, and poorer survival outcomes in luminal-type breast cancer. The METABRIC data revealed that reduced cyclin-dependent kinase inhibitor 1B (CDKN1B) expression (encoding p27) was associated with cell proliferation-related pathways and epigenetic polycomb repressive complex 2. Using ML, p27 emerged as the second most significant survival factor after N stage, thereby enhancing survival model performance. Additionally, luminal-type breast cancer cell lines with low CDKN1B expression demonstrated increased sensitivity to specific anticancer drugs such as voxtalisib and serdemetan, implying a potential therapeutic synergy between CDKN1B-targeted approaches and these drugs. CONCLUSION: The integration of ML and bioinformatic analyses of p27 has the potential to enhance risk stratification and facilitate personalized treatment strategies for patients with breast cancer.

2.
Exp Neurobiol ; 33(4): 202-214, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39266476

RESUMO

Numerous systemic diseases manifest with oral symptoms and signs. The molecular diagnosis of Alzheimer's disease (AD), the most prevalent neurodegenerative disease worldwide, currently relies on invasive or expensive methods, emphasizing the imperative for easily accessible biomarkers. In this study, we explored the expression patterns of key proteins implicated in AD pathophysiology within the taste buds of mice. We detected the expression of amyloid precursor protein (APP) and tau protein in the taste buds of normal C57BL/6 mice. Phosphorylated tau was predominantly found in type II and III taste cells, while APP was located in type I taste cells. Remarkably, we observed significantly stronger immunoreactivity to phosphorylated tau in the taste buds of aged AD mouse models compared to age-matched controls. These findings underscore the oral expression of biomarkers associated with AD, highlighting the diagnostic potential of the oral cavity for neurodegenerative diseases.

3.
Anim Cells Syst (Seoul) ; 28(1): 353-366, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040684

RESUMO

Taste buds, the neuroepithelial organs responsible for the detection of gustatory stimuli in the oral cavity, arise from stem/progenitor cells among nearby basal keratinocytes. Using genetic lineage tracing, Lgr5 and Lgr6 were suggested as the specific markers for the stem/progenitor cells of taste buds, but recent evidence implied that taste buds may arise even in the absence of these markers. Thus, we wanted to verify the genetic lineage tracing of lingual Lgr5- and Lgr6-expressing cells. Unexpectedly, we found that antibody staining revealed more diverse Lgr5-expressing cells inside and outside the taste buds of circumvallate papillae than was previously suggested. We also found that, while tamoxifen-induced genetic recombination occurred only in cells expressing the Lgr5 reporter GFP, we did not see any increase in the number of recombined daughter cells induced by consecutive injections of tamoxifen. Similarly, we found that cells expressing Lgr6, another stem/progenitor cell marker candidate and an analog of Lgr5, also do not generate recombined clones. In contrast, Lgr5-expressing cells in fungiform papillae can transform into Lgr5-negative progeny. Together, our data indicate that lingual Lgr5- and Lgr6-expressing cells exhibit diversity in their capacity to transform into Lgr5- and Lgr6-negative cells, depending on their location. Our results complement previous findings that did not distinguish this diversity.

4.
Curr Med Chem ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38639279

RESUMO

INTRODUCTION: The CLDN18 gene, encoding claudin 18.1 and claudin 18.2, is a key component of tight junction strands in epithelial cells that form a paracellular barrier that is critical in Stomach Adenocarcinoma (STAD). METHODS: Our study included 1,095 patients with proven STAD, 415 from The Cancer Genome Atlas (TCGA) cohort and 680 from the Gene Expression Omnibus database. We applied various analyses, including gene set enrichment analysis, pathway analysis, and in vitro drug screening to evaluate survival, immune cells, and genes and gene sets associated with cancer progression, based on CLDN18 expression levels. Gradient boosting machine learning (70% for training, 15% for validation, and 15% for testing) was used to evaluate the impact of CLDN18 on survival and develop a survival prediction model. RESULTS: High CLDN18 expression correlated with worse survival in lymphocyte-poor STAD, accompanied by decreased helper T cells, altered metabolic genes, low necrosis-related gene expression, and increased tumor proliferation. CLDN18 expression showed associations with gene sets associated with various stomach, breast, ovarian, and esophageal cancers, while pathway analysis linked CLDN18 to immunity. Incorporating CLDN18 expression improved survival prediction in a machine learning model. Notably, nutlin-3a and niraparib effectively inhibited high CLDN18-expressing gastric cancer cells in drug screening. CONCLUSION: Our study provides a comprehensive understanding of the biological role of CLDN18-based bioinformatics and machine learning analysis in STAD, shedding light on its prognostic significance and potential therapeutic implications. To fully elucidate the molecular intricacies of CLDN18, further investigation is warranted, particularly through in vitro and in vivo studies.

5.
Brain Struct Funct ; 229(3): 681-694, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38305875

RESUMO

Epithelial sodium channel (ENaC) is responsible for regulating Na+ homeostasis. While its physiological functions have been investigated extensively in peripheral tissues, far fewer studies have explored its functions in the brain. Since our limited knowledge of ENaC's distribution in the brain impedes our understanding of its functions there, we decided to explore the whole-brain expression pattern of the Scnn1a gene, which encodes the core ENaC complex component ENaCα. To visualize Scnn1a expression in the brain, we crossed Scnn1a-Cre mice with Rosa26-lsl-tdTomato mice. Brain sections were subjected to immunofluorescence staining using antibodies against NeuN or Myelin Binding Protein (MBP), followed by the acquisition of confocal images. We observed robust tdTomato fluorescence not only in the soma of cortical layer 4, the thalamus, and a subset of amygdalar nuclei, but also in axonal projections in the hippocampus and striatum. We also observed expression in specific hypothalamic nuclei. Contrary to previous reports, however, we did not detect significant expression in the circumventricular organs, which are known for their role in regulating Na+ balance. Finally, we detected fluorescence in cells lining the ventricles and in the perivascular cells of the median eminence. Our comprehensive mapping of Scnn1a-expressing cells in the brain will provide a solid foundation for further investigations of the physiological roles ENaC plays within the central nervous system.


Assuntos
Encéfalo , Canais Epiteliais de Sódio , Animais , Camundongos , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Hipotálamo/metabolismo , Proteína Vermelha Fluorescente , Sódio/metabolismo , Encéfalo/metabolismo
6.
J Korean Med Sci ; 39(2): e16, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225784

RESUMO

BACKGROUND: Tumor spread through air spaces (STAS) is a recently discovered risk factor for lung adenocarcinoma (LUAD). The aim of this study was to investigate specific genetic alterations and anticancer immune responses related to STAS. By using a machine learning algorithm and drug screening in lung cancer cell lines, we analyzed the effect of Janus kinase 2 (JAK2) on the survival of patients with LUAD and possible drug candidates. METHODS: This study included 566 patients with LUAD corresponding to clinicopathological and genetic data. For analyses of LUAD, we applied gene set enrichment analysis (GSEA), in silico cytometry, pathway network analysis, in vitro drug screening, and gradient boosting machine (GBM) analysis. RESULTS: The patients with STAS had a shorter survival time than those without STAS (P < 0.001). We detected gene set-related downregulation of JAK2 associated with STAS using GSEA. Low JAK2 expression was related to poor prognosis and a low CD8+ T-cell fraction. In GBM, JAK2 showed improved survival prediction performance when it was added to other parameters (T stage, N stage, lymphovascular invasion, pleural invasion, tumor size). In drug screening, mirin, CCT007093, dihydroretenone, and ABT737 suppressed the growth of lung cancer cell lines with low JAK2 expression. CONCLUSION: In LUAD, low JAK2 expression linked to the presence of STAS might serve as an unfavorable prognostic factor. A relationship between JAK2 and CD8+ T cells suggests that STAS is indirectly related to the anticancer immune response. These results may contribute to the design of future experimental research and drug development programs for LUAD with STAS.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/diagnóstico , Janus Quinase 2/genética , Neoplasias Pulmonares/patologia , Invasividade Neoplásica/patologia , Recidiva Local de Neoplasia , Estadiamento de Neoplasias , Prognóstico , Estudos Retrospectivos , Linfócitos T
7.
Bioresour Technol ; 394: 130306, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199437

RESUMO

The fragmentation of bioplastics (BPs) before pretreatment and anaerobic digestion is conducted for higher efficiency; however, based on the literature, the size reduction varies widely. In this study, initially, various combinations of thermal-alkaline pretreatments were applied at different strengths to the polylactic acid (PLA) in three groups (<0.5, 0.5 < size < 1.0, and 1.0 < size < 2.0 mm). After pretreatment, the solubilization of PLA was increased to 11.5-40.0 % using alkaline dosage and temperature ranging from 50 to 200 g OH-/kg BP, 60-100 °C, respectively, in a 1-10 h timeframe. The results were statistically proved using a 3D response surface graph, where the pretreatment was more effective for smaller particle sizes. The reduction in particle size also increased the CH4 production, which was more pronounced at the strong pretreatment (24 % increment vs. 10-15 %). Computed results indicated 44-86 % conversion of pretreated PLA particles to CH4, supported by Fourier transform infrared spectroscopy analysis, especially focusing on the intensity of -OH bands.


Assuntos
Biocombustíveis , Poliésteres , Tamanho da Partícula , Biopolímeros , Anaerobiose , Metano/química
8.
Ann Surg Oncol ; 31(3): 2114-2126, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38093168

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs) play a crucial role in tumor microenvironment regulation and cancer progression. This study assessed the significance and predictive potential of CAFs in breast cancer prognosis. METHODS: The study included 1503 breast cancer patients. Cancer-associated fibroblasts were identified using morphologic features from hematoxylin and eosin slides. The study analyzed clinicopathologic parameters, survival rates, immune cells, gene sets, and prognostic models using gene-set enrichment analysis, in silico cytometry, pathway analysis, in vitro drug-screening, and gradient-boosting machine (GBM)-learning. RESULTS: The presence of CAFs correlated significantly with young age, lymphatic invasion, and perineural invasion. In silico cytometry showed altered leukocyte subsets in the presence of CAFs, with decreased CD8+ T cells. Gene-set enrichment analysis showed associations with critical processes such as the epithelial-mesenchymal transition and immune modulation. Drug sensitivity analysis in breast cancer cell lines with varying fibroblast activation protein-α expression suggested that CAF-targeted therapies might enhance the efficacy of certain anticancer drugs including ARRY-520, ispinesib-mesylate, paclitaxel, and docetaxel. Integrating CAF presence with machine-learning improved survival prediction. For breast cancer patients, CAFs were independent prognostic markers for worse disease-specific survival and disease-free survival. CONCLUSION: This study highlighted the significance of CAFs in breast cancer biology and provided compelling evidence of their impact on patient outcomes and treatment response. The findings offer valuable insights into the potential of CAFs as prognostic and predictive biomarkers and support the development of CAF-targeted therapies to improve breast cancer management.


Assuntos
Neoplasias da Mama , Fibroblastos Associados a Câncer , Humanos , Feminino , Neoplasias da Mama/patologia , Fibroblastos Associados a Câncer/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Prognóstico , Linfócitos T CD8-Positivos/patologia , Linfócitos T , Microambiente Tumoral/genética
9.
Chemistry ; 30(5): e202302916, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37902438

RESUMO

Blood continually contributes to the maintenance of homeostasis of the body and contains information regarding the health state of an individual. However, current hematological analyses predominantly rely on a limited number of CD markers and morphological analysis. In this work, differentially sensitive fluorescent compounds based on TCF scaffolds are introduced that are designed for fluorescent phenotyping of blood. Depending on their structures, TCF compounds displayed varied responses to reactive oxygen species, biothiols, redox-related biomolecules, and hemoglobin, which are the primary influential factors within blood. Contrary to conventional CD marker-based analysis, this unbiased fluorescent phenotyping method produces diverse fingerprints of the health state. Precise discrimination of blood samples from 37 mice was demonstrated based on their developmental stages, ranging from 10 to 19 weeks of age. Additionally, this fluorescent phenotyping method enabled the differentiation between drugs with distinct targets, serving as a simple yet potent tool for pharmacological analysis to understand the mode of action of various drugs.


Assuntos
Envelhecimento , Corantes Fluorescentes , Camundongos , Animais , Corantes Fluorescentes/química , Espécies Reativas de Oxigênio/análise , Oxirredução , Células Sanguíneas/química
10.
Bioresour Technol ; 394: 130217, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104664

RESUMO

Being considered as a valuable resource and energy carrier, extensive research is going on to efficiently extract ammonia (NH3) from anaerobic digestate. However, due to the well-known NH3 inhibition on methanogens, the total NH3 nitrogen (TAN) concentration is typically limited to 1-4 g N/L in digestate, making the NH3 extraction process energy-consumptive. Here, NH3 fermentation, specifically targeting augmented NH3 production through biological reaction, was performed in a continuous mode. With the increase of gelatin input (10 to 150 g COD/L), NH3 concentration and volumetric productivity gradually increased, reaching 12.0 g TAN-N/L and 36.0 g NH3-N/L/d, which were the highest values ever reported. The stepwise increase in NH3 exposure prompted a shift in microbial dominance towards Hathewaya (from 1 % to 68 %), a critical factor for having high NH3 tolerance. Finally, NH3 stripping results suggested that highly concentrated broth could reduce the specific energy consumption for NH3 extraction to 1/3.


Assuntos
Amônia , Nitrogênio , Fermentação , Amônia/farmacologia
11.
Animals (Basel) ; 13(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37889804

RESUMO

Successful dog cloning requires a sufficient number of in vivo matured oocytes as recipient oocytes for reconstructing embryos. The accurate prediction of the ovulation day in estrus bitches is critical for collecting mature oocytes. Traditionally, a specific serum progesterone (P4) range in the radioimmunoassay (RIA) system has been used for the prediction of ovulation. In this study, we investigated the use of an enzyme-linked fluorescence assay (ELFA) system for the measurement of P4. Serum samples of estrus bitches were analyzed using both RIA and ELFA, and the measured P4 values of ELFA were sorted into 11 groups based on the standard concentration measured in RIA and compared. In addition, to examine the tendency of changes in the P4 values in each system, the P4 values on ovulation day (from D - 6 to D + 1) in both systems were compared. The ELFA range of 5.0-12.0 ng/mL was derived from the RIA standard range of 4.0-8.0 ng/mL. The rates of acquired matured oocytes in RIA and ELFA were 55.47% and 65.19%, respectively. The ELFA system successfully produced cloned puppies after the transfer of the reconstructed cloned oocytes. Our findings suggest that the ELFA system is suitable for obtaining in vivo matured oocytes for dog cloning.

12.
Life Sci ; 332: 122101, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37730110

RESUMO

AIMS: We investigated whether modulation of white adipose tissue (WAT) vasculature regulates rebound weight gain (RWG) after caloric restriction (CR) in mice fed a high-fat diet (HFD). MAIN METHODS: We compared changes in energy balance, hypothalamic neuropeptide gene expression, and characteristics of WAT by RT-qPCR, ELISA, immunohistochemistry, and adipose-derived stromal vascular fraction spheroid sprouting assay in obese mice fed a HFD ad libitum (HFD-AL), mice under 40 % CR for 3 or 4 weeks, mice fed HFD-AL for 3 days after CR (CRAL), and CRAL mice treated with TNP-470, an angiogenic inhibitor. KEY FINDINGS: WAT angiogenic genes were expressed at low levels, but WAT vascular density was maintained in the CR group compared to that in the HFD-AL group. The CRAL group showed RWG, fat regain, and hyperphagia with higher expression of angiogenic genes and reduced pericyte coverage of the endothelium in WAT on day 3 after CR compared to the CR group, indicating rapidly increased angiogenic activity after CR. Administration of TNP-470 suppressed RWG, fat regain, and hyperphagia only after CR compared to the CRAL group. Changes in circulating leptin levels and hypothalamic neuropeptide gene expression were correlated with changes in weight and fat mass, suggesting that TNP-470 suppressed hyperphagia independently of the hypothalamic melanocortin system. Additionally, TNP-470 increased gene expression related to thermogenesis, fuel utilization, and browning in brown adipose tissue (BAT) and WAT, indicating TNP-470-induced increase in thermogenesis. SIGNIFICANCE: Modulation of the WAT vasculature attenuates RWG after CR by suppressing hyperphagia and increasing BAT thermogenesis and WAT browning.

13.
ACS Omega ; 8(29): 26191-26200, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37521666

RESUMO

Two new ecdysteroids, spectasterone A (1) and spectasterone B (2), together with four known ecdysteroids, breviflorasterone (3), ajugalactone (4), 20-hydroxyecdysone (5), and polypodine B (6) were isolated from the Korean endemic plant Ajuga spectabilis using feature-based molecular networking analysis. The chemical structures of 1 and 2 were determined based on the interpretation of NMR and mass spectrometric data. Their absolute configurations were established using 3JH, H coupling constants, NOESY interactions, Mosher's method, and ECD and DP4+ calculations. To identify their biological target, a machine learning-based prediction system was applied, and the results indicated that ecdysteroids may have 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1)-related activity, which was further supported by molecular docking results of ecdysteroids with 11ß-HSD1. Following this result, all the isolated ecdysteroids were tested for their ability to affect the expression of 11ß-hydroxysteroid dehydrogenase type 1 and glucocorticoid receptors (GRs) in HaCaT cells irradiated with UVB. Compounds 2-5 exhibited inhibition of 11ß-HSD1 expression and increases in GR activity.

14.
Front Microbiol ; 14: 1180018, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37266025

RESUMO

Due to the high global warming potential (GWP) in a short time scale (GWP100 = 28 vs. GWP20 = 86), mitigating CH4 emissions could have an early impact on reducing current global warming effects. The manure storage tank emits a significant amount of CH4, which can diminish the environmental benefit resulting from the anaerobic digestion of manure that can generate renewable energy. In the present study, we added the reverse osmosis concentrate (ROC) rich in salt to the pig slurry (PS) storage tank to reduce CH4 emissions. Simultaneously, pure NaCl was tested at the same concentration to compare and verify the performance of ROC addition. During 40 days of storage, 1.83 kg CH4/ton PS was emitted, which was reduced by 7-75% by the addition of ROC at 1-9 g Na+/L. This decrease was found to be more intensive than that found upon adding pure sodium, which was caused by the presence of sulfate rich in ROC, resulting in synergistic inhibition. The results of the microbial community and activity test showed that sodium directly inhibited methanogenic activity rather than acidogenic activity. In the subsequent biogas production from the stored PS, more CH4 was obtained by ROC addition due to the preservation of organic matter during storage. Overall, 51.2 kg CO2 eq./ton PS was emitted during the storage, while 8 kg CO2 eq./ton PS was reduced by biogas production in the case of control, resulting in a total of 43.2 kg CO2 eq./ton PS. This amount of greenhouse gas emissions was reduced by ROC addition at 5 g Na+/L by 22 and 65 kg CO2 eq./ton PS, considering GWP100 and GWP20 of CH4, respectively, where most of the reduction was achieved during the storage process. To the best of our knowledge, this was the first report using salty waste to reduce GHG emissions in a proper place, e.g., a manure storage tank.

15.
J Pathol Transl Med ; 57(3): 166-177, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37194150

RESUMO

BACKGROUND: Research regarding cervical metastasis from an unknown primary tumor (CUP) according to human papillomavirus (HPV) and Epstein-Barr virus (EBV) status in Korea has been sporadic and small-scale. This study aims to analyze and understand the characteristics of CUP in Korea according to viral and p16 and p53 status through a multicenter study. METHODS: Ninety-five cases of CUP retrieved from six hospitals in Korea between January 2006 and December 2016 were subjected to high-risk HPV detection (DNA in situ hybridization [ISH] or real-time polymerase chain reaction), EBV detection (ISH), and immunohistochemistry for p16 and p53. RESULTS: CUP was HPV-related in 37 cases (38.9%), EBV-related in five cases (5.3%), and unrelated to HPV or EBV in 46 cases (48.4%). HPV-related CUP cases had the best overall survival (OS) (p = .004). According to the multivariate analysis, virus-unrelated disease (p = .023) and longer smoking duration (p < .005) were prognostic factors for poor OS. Cystic change (p = .016) and basaloid pattern (p < .001) were more frequent in HPV-related cases, and lymphoepithelial lesion was frequent in EBV-related cases (p = .010). There was no significant association between viral status and p53 positivity (p = .341), smoking status (p = .728), or smoking duration (p = .187). Korean data differ from Western data in the absence of an association among HPV, p53 positivity, and smoking history. CONCLUSIONS: Virus-unrelated CUP in Korea had the highest frequency among all CUP cases. HPV-related CUP is similar to HPV-mediated oropharyngeal cancer and EBVrelated CUP is similar to nasopharyngeal cancer in terms of characteristics, respectively.

16.
J Lipid Res ; 64(6): 100387, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37201659

RESUMO

Chemotherapy-induced cachexia causes severe metabolic abnormalities independently of cancer and reduces the therapeutic efficacy of chemotherapy. The underlying mechanism of chemotherapy-induced cachexia remains unclear. Here we investigated the cytarabine (CYT)-induced alteration in energy balance and its underlying mechanisms in mice. We compared energy balance-associated parameters among the three groups of mice: CON, CYT, and PF (pair-fed mice with the CYT group) that were intravenously administered vehicle or CYT. Weight gain, fat mass, skeletal muscle mass, grip strength, and nocturnal energy expenditure were significantly lowered in the CYT group than in the CON and PF groups. The CYT group demonstrated less energy intake than the CON group and higher respiratory quotient than the PF group, indicating that CYT induced cachexia independently from the anorexia-induced weight loss. Serum triglyceride was significantly lower in the CYT group than in the CON group, whereas the intestinal mucosal triglyceride levels and the lipid content within the small intestine enterocyte were higher after lipid loading in the CYT group than in the CON and PF groups, suggesting that CYT inhibited lipid uptake in the intestine. This was not associated with obvious intestinal damage. The CYT group showed increased zipper-like junctions of lymphatic endothelial vessel in duodenal villi compared to that in the CON and CYT groups, suggesting their imperative role in the CYT-induced inhibition of lipid uptake. CYT worsens cachexia independently of anorexia by inhibiting the intestinal lipid uptake, via the increased zipper-like junctions of lymphatic endothelial vessel.


Assuntos
Antineoplásicos , Caquexia , Camundongos , Animais , Caquexia/induzido quimicamente , Citarabina/farmacologia , Anorexia/etiologia , Intestino Delgado/metabolismo , Triglicerídeos , Lipídeos
17.
Front Pharmacol ; 14: 1108660, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153803

RESUMO

Aims: Metformin improves glucose regulation through various mechanisms in the periphery. Our previous study revealed that oral intake of metformin activates several brain regions, including the hypothalamus, and directly activates hypothalamic S6 kinase in mice. In this study, we aimed to identify the direct effects of metformin on glucose regulation in the brain. Materials and methods: We investigated the role of metformin in peripheral glucose regulation by directly administering metformin intracerebroventricularly in mice. The effect of centrally administered metformin (central metformin) on peripheral glucose regulation was evaluated by oral or intraperitoneal glucose, insulin, and pyruvate tolerance tests. Hepatic gluconeogenesis and gastric emptying were assessed to elucidate the underlying mechanisms. Liver-specific and systemic sympathetic denervation were performed. Results: Central metformin improved the glycemic response to oral glucose load in mice compared to that in the control group, and worsened the response to intraperitoneal glucose load, indicating its dual role in peripheral glucose regulation. It lowered the ability of insulin to decrease serum glucose levels and worsened the glycemic response to pyruvate load relative to the control group. Furthermore, it increased the expression of hepatic G6pc and decreased the phosphorylation of STAT3, suggesting that central metformin increased hepatic glucose production. The effect was mediated by sympathetic nervous system activation. In contrast, it induced a significant delay in gastric emptying in mice, suggesting its potent role in suppressing intestinal glucose absorption. Conclusion: Central metformin improves glucose tolerance by delaying gastric emptying through the brain-gut axis, but at the same time worsens it by increasing hepatic glucose production via the brain-liver axis. However, with its ordinary intake, central metformin may effectively enhance its glucose-lowering effect through the brain-gut axis, which could surpass its effect on glucose regulation via the brain-liver axis.

18.
J Pathol Clin Res ; 9(3): 236-248, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36864013

RESUMO

Gamma-butyrobetaine dioxygenase (BBOX1) is a catalyst for the conversion of gamma-butyrobetaine to l-carnitine, which is detected in normal renal tubules. The purpose of this study was to analyze the prognosis, immune response, and genetic alterations associated with low BBOX1 expression in patients with clear cell renal cell carcinoma (RCC). We analyzed the relative influence of BBOX1 on survival using machine learning and investigated drugs that can inhibit renal cancer cells with low BBOX1 expression. We analyzed clinicopathologic factors, survival rates, immune profiles, and gene sets according to BBOX1 expression in a total of 857 patients with kidney cancer from the Hanyang University Hospital cohort (247 cases) and The Cancer Genome Atlas (610 cases). We employed immunohistochemical staining, gene set enrichment analysis, in silico cytometry, pathway network analyses, in vitro drug screening, and gradient boosting machines. BBOX1 expression in RCC was decreased compared with that in normal tissues. Low BBOX1 expression was associated with poor prognosis, decreased CD8+ T cells, and increased neutrophils. In gene set enrichment analyses, low BBOX1 expression was related to gene sets with oncogenic activity and a weak immune response. In pathway network analysis, BBOX1 was linked to regulation of various T cells and programmed death-ligand 1. In vitro drug screening showed that midostaurin, BAY-61-3606, GSK690693, and linifanib inhibited the growth of RCC cells with low BBOX1 expression. Low BBOX1 expression in patients with RCC is related to short survival time and reduced CD8+ T cells; midostaurin, among other drugs, may have enhanced therapeutic effects in this context.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , gama-Butirobetaína Dioxigenase/genética , Prognóstico , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Biomarcadores
19.
Bioresour Technol ; 376: 128897, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36931446

RESUMO

Autogenerative high-pressure digestion has an advantage of producing CH4-rich biogas directly from the reactor. However, its continuous operation has rarely been reported, and has never been attempted in an upflow anaerobic sludge blanket reactor (UASB). Here, UASB was continuously operated at 10 g COD/L/d with increasing pressure from 1 to 8 bar. As the pressure increased, the CH4 content in the biogas increased gradually, reaching 96.7 ± 0.8% at 8 bar (309 MJ/m3 biogas). The pH was dropped from 8.2 to 7.2 with pressure increase, but COD removal efficiency was maintained > 90%. The high pressure up to 8 bar did not adversely impact the physicochemical properties of granules, which was due to the increased production of extracellular polymeric substances (EPS), particularly, tightly bound EPS (34% increase). With pressure increase, there was no changes in the microbial community and ATPase gene expression, but 41% increase in carbonic anhydrase gene expression was observed.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Esgotos/química , Biocombustíveis , Anaerobiose , Reatores Biológicos
20.
Bioorg Chem ; 134: 106466, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36934691

RESUMO

Actinidia polygama has been used as a traditional medicine for treating various diseases. In the present study, 13 compounds, including three new monoterpenoids (1-3), were isolated from the leaves of A. polygama to investigate the bioactive constituents of the plant. The structures were characterized by analyzing spectroscopic and chiroptical data. These compounds were preliminarily screened for their ability to increase insulin secretion levels after glucose stimulation. Of these, 3-O-coumaroylmaslinic acid (4) and jacoumaric acid (5) showed activity. In further biological studies, these compounds exhibited increased glucose-stimulated insulin secretion (GSIS) activity without cytotoxicity in rat INS-1 pancreatic ß-cells as well as α-glucosidase inhibitory activity. Furthermore, both compounds increased insulin receptor substrate-2 (IRS-2), phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), pancreatic and duodenal homeobox-1 (PDX-1), and peroxisome proliferator-activated receptor-γ (PPAR-γ) expression. Hence, these compounds may be developed as potential antidiabetic agents.


Assuntos
Actinidia , alfa-Glucosidases , Ratos , Animais , Secreção de Insulina , alfa-Glucosidases/metabolismo , Actinidia/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Glucose/metabolismo , Insulina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA